
Institut f�ur Informatik und Praktische Mathematik der

Christian�Albrechts�Universit�at zu Kiel

Olshausenstr� ��

D � ����	 Kiel

Contributions

to

Mechanical Proofs of Correctness

for

Compiler Front�Ends

Debora Weber�Wul

Bericht Nr� ����

April ����

Email
 weberwu�tfh�berlin�de

Dieser Bericht enth�alt die Dissertation der Verfasserin�

Referent
 Prof� Dr� Hans Langmaack

Korreferent
 Prof� Dr� Robert S� Boyer

Contents

� Introduction �

��� Proven Correct vs� Provably Correct Parsing �

��� Overview �

� Previous Work �

��� Compiler Veri�cation with the Stanford Veri�er � � � � � � � � � � � � � � � � � �

����� Scanning �

����� Parsing �

����� Summary �

��� A Veri�ed Scanner Generator in Gypsy �

��� Cohn with LCF �

��	 Program Synthesis Work �

��� A VDM Speci�cation for an Earley Parser �

��� The Boyer�Moore Logic �

����� Proof Method �

����� Syntax �

����� Interactive Proof Checker ��

����	 Example Proof ��

����� Compiler Proofs with the Boyer�Moore Prover � � � � � � � � � � � � � � ��

����� Suitableness for this Proof �

� A Mechanical Proof� NFSA � DFSA ��

��� The Hand Proof� Rabin�Scott ��

��� A Constructive Proof �	

����� Automaton De�nition ��

����� Construction of the Deterministic Table � � � � � � � � � � � � � � � � � � ��

����� The Deterministic Automaton ��

����	 The Proof� Basic Theorems �

����� The Proof� The Generated Automaton is Deterministic � � � � � � � � � ��

����� The Proof� The DFSA Accepts if the NFSA does � � � � � � � � � � � � �	

����� The Proof� The NFSA Accepts if the DFSA does � � � � � � � � � � � � �

��� An Existential Proof ��

����� Construction of the Deterministic Table � � � � � � � � � � � � � � � � � � ��

����� The Generated Automaton is Deterministic � � � � � � � � � � � � � � � � 	

����� The DFSA Accepts if the NFSA does � � � � � � � � � � � � � � � � � � � 	�

����	 The NFSA Accepts if the DFSA does � � � � � � � � � � � � � � � � � � � 	�

����� Discussion � 	�

��	 Extending the Automata with ��Transitions � 	�

�

� CONTENTS

� Scanning ��

	�� Mechanically Proven�Correct Scanning � 	�

	�� Splitting O� Pre�Tokens � 	�

	���� Character Class De�nition � 	�

	���� Pre�Token Class De�nition �

	���� Constructing a FSA �

	���	 Speci�cation of split �	

	���� Implementation of split ��

	���� Proof of correctness for split �

	���� An Incorrect Implementation ��

	���
 E�cient Scanning� �	

	�� Transforming Pre�Tokens into Tokens ��

	���� toktrans Speci�cation for PLR
� ��

	���� toktrans Implementations and Proofs for PLR
� � � � � � � � � � � � � � � ��

	�	 Finding an Adequate Representation for Tokens � � � � � � � � � � � � � � � � �
�

� The Parsing Skeleton �	

��� Data Types �

����� Stacks �

����� Grammar ��

����� Set Theory �	

����	 Lists ��

����� Trees ��

����� Con�gurations �
�

����� Derivations �
�

����
 Sentential Forms �
�

����� The Parsing Tables �

��� The Parsing Function �
�

��� The Invariants of Parsing ���

����� Stack Size ���

����� Leaves ���

����� Number of Reductions ��

����	 Nodes ���

����� Main Theorem ��	

 The Parser Table Generator ���

��� LR Parsing methods ���

��� Constructing a Parsing Table ���

����� Canonical Collection ���

����� Obtaining a DFSA ��

����� Construction of the Parsing Table ���

��� Implementing the Table Generator ��	

����� Creating the NFSA ��	

����� Transforming the NFSA to an Equivalent DFSA � � � � � � � � � � � � � ���

����� Extracting the Parsing Table ���

����	 Action Table ���

��	 Relevant Theorems �	�

CONTENTS �

� Discussion ��	
��� General Concerns �	�

����� Why Choose NQTHM� ��

����� Termination ��

����� Type and Implementation Problems ���
����	 Sets ���
����� Axioms ���
����� Existential Quanti�cation ��	
����� Second Order ��	
����
 Script Writing ��	

��� Proof E�ort ���
����� NFSA � DFSA ���
����� Scanner ���
����� Parser ���
����	 Parser Generator ��

��� Considerations of Prover Use ��

����� The �Matt Factor� ���
����� The Lore of the Prover ���
����� A Strategy for Using NQTHM Outside of Austin� � � � � � � � � � � � � ���

��	 Summary ���

A Scanning ���

A�� Character Class Speci�cation for PLR
� ���

A�� DFSA for PLR
� ���

A�� Token Transformation De�nitions for PLR
� ���

A�	 Retrieval of PLR
� Characters ���

B Parsing ���

B�� Parsing Table Generator ���
B���� Generation Instructions ���

	 CONTENTS

Summary

This dissertation was an investigation into what can be accomplished by a software engineer
in proving theorems about non�trivial programs in a mathematically well�founded application
area in a �nite amount of time � is it possible to mechanically prove a compiler front�end
correct�

There is a large body of theorems concerned not only with scanning and parsing� but
also with the generation of scanners and parsers from suitable speci�cations� Scanners� for
example� can be generated from collections of regular expressions� and parsers from context�
free grammars�

An actual mechanically proven correct parser generator does seem to be possible to con�
struct and verify� but not within the resources and scope of this thesis� in which a scanner and
a set of token transformation functions are speci�ed� implemented and mechanically proven
to conform to the speci�cations� a parser skeleton is speci�ed� implemented� and four of six
invariants of parsing mechanically proven correct� and a parsing table generator is speci�ed
and implemented and a portion of the proof of correctness� the equivalence of nondeterministic
and deterministic automaton� is demonstrated�

Some of the problems associated with proving a large system correct with the assistance
of a theorem prover are discussed and some suggestions for successful use of NQTHM� the
mechanical theorem prover used� are presented�

Key words

Veri�cation� Compiler construction� Mechanical Theorem Proving� Scanning� Parsing� NQTHM

CONTENTS �

Zusammenfassung

In dieser Dissertation wurde untersucht� inwieweit ein Software�Ingenieur Theoreme �uber
nicht�triviale Programme mit Hilfe eines automatischen Theorembeweisers in endlicher Zeit
beweisen kann� Es wurde ein mathematisch gut ausgeleuchtetes Gebiet gew�ahlt� der Com�
pilerbau� es sollten ein lexikalischer Analysator und ein Syntaxanalysator als korrekt in Bezug
auf ihre Spezi�kationen bewiesen werden�

Es gibt eine sehr gro�e Menge an Theoremen im Bereich der lexikalischen und syntakt�
ischen Analyse und auch an Theoremen �uber das Generieren von solchen Analysatoren� Einen
lexikalischen Analysator� z�B�� kann man mit einer Menge regul�arer Ausdr�ucke spezi�zieren�
einen Syntaxanalysator mit einer kontextfreien Grammatik�

Es war m�oglich� gro�e Teile dieser Analysatoren als korrekt zu beweisen� daher scheint es
durchaus m�oglich� komplette Beweise zu f�uhren� die Zeitinvestition ist jedoch au�erordentlich
hoch� Folgende Bereiche wurden abgedeckt�

� Ein lexikalischer Analysator und eine Menge von Token�Transformations�Funktionen
wurden spezi�ziert� implementiert� und die Implementierungen wurden als korrekt mit
Bezug auf die Spezi�kationen bewiesen�

� Ein Parserrahmen wurde spezi�ziert� implementiert� und vier der sechs Invarianten wur�
den als korrekt bewiesen�

� Ein LR����Tabellengenerator wurde spezi�ziert und implementiert� und ein Teil des
Korrektheitsbeweises� die �Aquivalenz von nichtdeterministischen und deterministischen
Automaten� wurden durchgef�uhrt�

Einige Probleme� die w�ahrend des Korrektheitsbeweises mit Hilfe eines Theorembeweisers
f�ur ein so gro�es Programm auftreten werden diskutiert� Einige Vorschl�age f�ur die Verwendung
vom verwendeten Theorembeweiser� NQTHM� werden pr�asentiert�

Schl�usselworte

Veri�kation� Compilerbau� automatisches Theorembeweisen� lexikalische Analyse� Syntaxana�
lyse� NQTHM

� CONTENTS

Chapter �

Introduction

The success of program veri�cation as a generally applicable and completely reliable method
for guaranteeing program performance is not even a theoretical possibility�

� James H� Fetzer �Fet

�

Veri�cation� mechanical or not� is considered by some to be the cure�all for the current
software malaise� by others such as Fetzer to be impossible to do for more than toy examples�
There have been quite a number of mechanical veri�cations presented in recent years for non�
trivial examples� among them �AL��� BHMY
�� Bev

� BY��� CO�
� Coh

� Hun
�� Moo
��
and �You
��� so Fetzer�s argument that program veri�cation is not even theoretically possible
as a completely reliable method is rather weak�

The point about general applicability may at �rst seem to be well taken� however� These
researchers have either written theorem provers themselves or have worked closely with theorem
prover writers in mechanical veri�cation research groups� The application domains for these
veri�cations could have happened to have been particularly amenable to proof� In order for
veri�cation technology to be industrially successful� it is necessary for it to be transferable to
users who are not familiar with the internal workings of a theorem prover� and for the results to
be as reliable as if they were produced by a veri�cation expert �WW��b�� This dissertation is an
investigation into what can be accomplished by a software engineer in proving theorems about
non�trivial programs in a mathematically well�founded application area in a �nite amount of
time� That is� is it possible to mechanically prove a compiler front�end to be correct�

The �eld of compiler front�ends� the process of transforming a sequence of characters into
an abstract syntax tree as a preparation for the back�end� the code generation phase of a
compiler� is well�explored� Work has been conducted since the ���
s on identifying means of
specifying this part of a compiler� and there is a wealth of existing hand proofs which might
serve as a basis for a mechanical veri�cation�

Traditionally� there are three major phases that can be identi�ed in this part of a compiler�
They are

� the scanning phase� which groups characters from the input sequence into meaningful
substrings� referred to as token representations or pre�tokens�

� the parsing phase� which determines if the token sequence conforms to the phrase struc�
ture of a given grammar and constructs a concrete syntax tree� and

� the transforming phrase� which manipulates a concrete syntax tree� pruning� grafting�
and transforming branches to construct an abstract syntax tree�

There is a large body of theorems concerned not only with scanning� parsing� and trans�
forming� but also with the generation of scanners� parsers� and transformers from suitable

�

� CHAPTER �� INTRODUCTION

speci�cations� Scanners� for example� can be generated from a collection of regular expres�
sions� and parsers from a context�free grammar�

��� Proven Correct vs� Provably Correct Parsing

What exactly is the di�erence between having a system which has been proven correct and a
provably correct system� The following categories can be distinguished� A program is said to
be

proven correct when a hand proof of the correctness of the program with respect to its
speci�cation has been completely conducted�

provably correct when the process of conducting a hand proof of correctness for it has been
described in enough detail so that one can see that the proof is feasible� but the proof
has not been completely worked through�

mechanically proven correct when a complete machine veri�cation for the correctness has
been done� and

mechanically provably correct when the techniques for conducting such a proof have been
used to demonstrate some of the non�trivial lemmata� possibly making use of axioms� by
which means it can be seen that the formulation is amenable to mechanical proof�

Ideally� one wishes to have mechanically proven correct systems that were proven with the
aid of a mechanical veri�cation system which itself has been proven correct� No such mechanical
veri�cation system exists as yet� However� there are a number of veri�cation systems such as
the Boyer�Moore theorem prover NQTHM� the results of which are of high believability and
integrity� As was seen in the preparation of this dissertation� it is not a trivial task to formulate
the theorems that will state the correctness of a system without an intimate knowledge of the
application area and the veri�cation system to be used� It is even more di�cult to actually
conduct the veri�cation�

The motivation for investigating mechanically provably correct parsing grew out of the
ProCoS� project� which was involved in part with de�ning a provably correct compiler for a
family of languages related to occam �� The Kiel group attempted to not only de�ne a provably
correct compiler� but to conduct the hand proofs as well �see the proofs in �MO�
� Fr�a�
���
As it is necessary to go through a number of bootstrap iterations in the construction of such
a compiler� the problem of parsing concrete character sequences into abstract trees arises� A
completely proven correct compiler would thus have to include a proven correct parser� even
if the compiler itself was only a code generator that operated on abstract syntax trees�

The idea of a proven correct compiler has also been considered in the �Short Stack� proofs
conducted with NQTHM as described in �BHMY
�� Moo
�� You
�� Hun
�� Bev
��� This
mechanically proven correct compiler� however� proceeds from a representation of abstract
syntax and does not address the parsing problem�

As part of the goal of constructing a provably correct compiler for the ProCoS project as
described in �DB��� it was also necessary to prove correct compilers for a number of related
languages� Since this would entail a number of quite similar proofs for similar languages� it
was thought that it would be easier to construct and prove correct a set of generators for each

�ProCoS was partially funded by the Commission of the European Communities �CEC� under the ESPRIT
program in the �eld of Basic Research Action project no� ���	
�����
ProCoS� Provably Correct Systems��
Technical reports are available from the ProCoS Secretary� Programming Research Group� Oxford University
Computing Laboratory� ���� Keble Road� Oxford OX� �QD� United Kingdom�

���� OVERVIEW �

part of a front�end� This would ensure that all front�ends generated by this method would
be correct� thus saving the enormous e�ort of re�proving the front�end for any changes to the
language or for each new language�

The complexity of this problem� the mechanical proof of a front�end generator� has been
found to be outside the scope of what can feasibly be done in the context of a dissertation topic�
Instead� this thesis concentrates on the topic of mechanically provably correct scanning and
parsing for speci�c languages� and addresses only some of the issues that would be encountered
in mechanically provably correct parser generation�

��� Overview

An actual mechanically proven correct parser generator does seem to be possible to construct
and verify� but not within the resources and scope of this thesis� in which

� a scanner and a set of token transformation functions are speci�ed� implemented and
mechanically proven to conform to their speci�cations�

� a parser skeleton is speci�ed� implemented� and four of six invariants of parsing are
mechanically proven correct� and

� a parsing table generator is speci�ed and implemented and a portion of the proof of
correctness� the equivalence of nondeterministic and deterministic automaton� is demon�
strated�

I �rst discuss the previous work done on mechanical proofs in the area of parsing in Chapter
�� A brief introduction to the mechanical veri�cation system used� the Boyer�Moore prover
NQTHM� is given in Section ����

Since the proof of the equivalence of nondeterministic and deterministic automata is ne�
cessary for two parts of a compiler front�end � for the scanner and for the table generator �
a detailed proof discussion is presented in Chapter �� This proof also gives an idea of the
complexity involved in mechanical proofs� and of the seemingly obvious properties that had to
be included in the proof�

The process of scanning an input �le and producing a sequence of tokens is discussed
in Chapter 	� A �nite state automaton is used for recognizing potential tokens according to
a set of regular expressions� A scanner �nds the longest such token that is a pre�x of the
character sequence and splits the sequence into such longest accepting pre�x tokens� Token
transformation functions operate on the sequence of tokens� It takes into account aspects that
cannot be expressed as regular expressions but which do not need the full power of context�free
grammars� or which are easy to formulate in some other formalism�

Determining the phrase structure of a sequence of tokens is the job of the parser� In
Chapter � a table�driven parser skeleton is speci�ed� implemented� and some invariants on
parsing are proven correct� In Chapter � the problem of constructing a parsing table for an
SLR�k� grammar is discussed and an implementation in the Boyer�Moore logic is given� A
number of theorems which should be proven for a parser table generator are discussed�

In the concluding chapter� some of the problems associated with proving a large system
correct with the assistance of a theorem prover are discussed and some suggestions for successful
use of NQTHM are presented� The de�nitions for the scanner and the parsing table produced
for the ProCoS compiler implementation language PLR

� as well as the proof scripts for all of
the de�nitions and proofs� can be obtained from
http���www�tfh�berlin�de��weberwu�diss�list�html�

	 CHAPTER �� INTRODUCTION

Chapter �

Previous Work

This chapter brie�y examines previous attempts to mechanically verify all or part of the pro�
cess of determining an abstract syntax tree for a concrete character string with respect to a
grammar� It is interesting to consider the kinds of theorems which can be stated and mechan�
ically proven about a compiler front�end� The front�end is more of a transformation system� as
opposed to a back�end� which is concerned with semantic preservation in the target language
of the constructs from the source language�

There are two major projects� the veri�cation of a complete front end as a part of a
compiler veri�cation for a Pascal�like language by Wolfgang Polak �Pol
��� and a veri�cation
of a scanner generator by Volker Penner �Pen
���

There are also two proofs of correctness for a simple expression language� Paul Gloess
�Glo

� used the Boyer�Moore prover to conduct a correspondence proof for an expression
language that is fully but not extraneously parenthesized� Avra Cohen used LCF to conduct
a similar proof for a precedence parsing algorithm �Coh
��� Some related work is being done
in the program synthesis community� where a scanner has been automatically generated from
speci�cations �KLW�	� that is quite similar to the mechanically veri�ed scanner in this thesis�

The chapter closes with a description of the veri�cation system used in this work� the
Boyer�Moore theorem prover� and a discussion of its use in proving compiler correctness�

��� Compiler Veri�cation with the Stanford Veri�er

In his ��
� book �Compiler Speci�cation and Veri�cation��Pol
��� Wolfgang Polak used the
Stanford Veri�er �Gro��� to verify assertions about the implementation of a compiler for a
Pascal�like language named LS� He addressed not only the questions concerning code gener�
ation� which have also been discussed in �BHMY
�� You

� You
��� but also considered the
questions that arise in scanning� parsing� and transforming a character string into an abstract
syntax tree� His proof encompasses over �

 veri�cation conditions that were proven about
	�� procedures and functions�

Since at that time formal speci�cation techniques for programming languages were not
generally agreed upon� with the exception of context�free grammars and regular expressions�
he �rst had to set up formal speci�cations� For scanning� he begins with an intuitive operational
description of the function� which includes discarding all characters which are not part of any
initial lexeme substring� �nding the longest initial substring that is a lexeme� and determining
the token which matches this lexeme� repeating until the input has been exhausted� The �rst
part of the speci�cation is questionable in as much as it permits the extraction of a sequence
of tokens from a string which is not properly part of the language de�ned�

�

� CHAPTER �� PREVIOUS WORK

����� Scanning

Polak�s formal speci�cation of the scanning process was operational in a functional manner�
That is� he de�ned mutually recursive functions that implement the informal description� If
he had been using a functional language for implementation� he would have had nothing to
prove� as the �speci�cation� would have been the implementation� Accordingly� he only proves
mechanically that the program re�ned from the speci�cation is partially correct with respect
to the speci�ed function� Further proofs� including the validity of scan or that the lexeme split
o� is indeed the longest such pre�x of the input string� will have had to have been done by
hand� outside of the veri�er�

The implementation will� however� run into an error when applied to the empty input string
�the �rst action is to read in a character� not to check if there are any characters to read��
whereas the speci�cation speci�es returning an empty token sequence without signalling an
error� In a worst case scenario� if the �uninitialized� variable for holding the current character
were to by chance hold a valid lexeme �for example� ����� a sequence containing a token would
be issued for an empty input string� This problem is of course easy to repair by including a
check for end of �le as the �rst statement of the program and�or initializing the variable�

A more serious problem involves his speci�cation of the token class structure of a language�
He grouped the tokens into regular languages that are pre�x�closed �except for �� with respect
to one another and ��free� That is� one can decide on the basis of the �rst letter seen to which
class the next token will belong� This means for example� that � and �� are in the same class�
and the e�ort of deciding which token has been found is delegated to the semantic functions�
These are neither speci�ed nor proven correct with the help of the veri�er� but assumed to
work correctly� This process does work for his language LS� but it is not applicable for general
regular expressions �as will be discussed in section 	������ as the concept of longest match does
not distribute over concatenation and selection�

����� Parsing

For the parser� Polak de�ned a mapping from token sequences to parse trees using unambiguous
labeled context�free grammars� Any parse tree in the grammar with a frontier equal to the
token sequence is a valid result from the parse function� and since the grammar is required to
be unambiguous� there is only one such parse tree for those token sequences which are members
of the language de�ned by the grammar�

He de�ned a shift�reduce parser that uses three stacks� a state stack� a symbol stack� and
a stack containing a forest of partial parse trees� Looking up a state�symbol pair in an LR���
parsing table returns an action� either shift� reduce� accept� shiftreduce� or error� The parser
chooses the action determined by the state on the top of the state stack and the next symbol
�i�e� token� in the input stream� The shiftreduce action does not seem to be motivated by
proof concerns� but rather by an attempt to optimize the parser somewhat�

He formulated a relation� slrrel� between the state stack and the symbol stack� This relation
holds between a stack containing only the initial state and an empty symbol stack� For each
action the parser can take� the exact correspondence between the stacks was noted� This
restricts the parsing table� however� from calling for ��reductions �which is the case when there
are ��productions in the grammar� � for in that case� both the state stack and the symbol stack
grow� but the slr�action was not a shift� as was speci�ed in the correspondence�

Another relation� isderiv ��is derivation��� is de�ned between a stack of partial parse trees
and a sequence of tokens� A parse tree for the input has been found if there exists a parse
tree which is in the isderiv relation with the input token sequence� and the root of this tree is
the start symbol of the grammar� This parse tree must be the concrete syntax parse tree and
not the abstract syntax parse tree� as some tokens are removed during tree transformation and

���� A VERIFIED SCANNER GENERATOR IN GYPSY �

others can change position� It is unclear how this was mechanically proven� as the function for
constructing the parse tree� mketree� has an exit condition �postcondition� of true� meaning
that any terminating implementation for this function would be correct� Surely this is not the
case� as one must ensure that the tokens remain in the frontier and are kept in order�

The main parsing algorithm itself does not check if the right hand side of the production
being reduced actually matches a su�x of the symbol stack� It only removes the appropriate
number of symbols from the respective stacks during reduction� The main loop contains two
assertion clauses for the Stanford Veri�er� two invariant clauses� and three large comment
clauses� These comment statements require additional speci�cation if they are to be proven
correct�

����� Summary

In summary� the front�end portions of Polak�s compiler veri�cation contain much proof work
and representational equalities which were conducted outside of the mechanical veri�cation
system� He notes that the development of the parser took ten re�nement steps� but it is not
clear if all of these re�nement steps were mechanically proven correct� or if only the veri�cation
conditions for the �nal version were checked with the Stanford Veri�er� His speci�cation
methods are also so intimately connected with the chosen language� that they are not generally
applicable� It must be emphasized� however� that the major thrust of his work is in the code
generation phase� a part of the compiler that is not discussed here�

��� A Veri�ed Scanner Generator in Gypsy

Volker Penner describes in �Pen
�� a scanner generator that was developed and veri�ed with the
Gypsy Veri�cation Environment �GVE� �GAS
��� The GVE� developed at the University of
Texas� Austin� consists of a parser� a veri�cation condition generator� and a theorem prover for
programs written in the language Gypsy� The veri�cation condition generator generates Floyd�
Hoare assertions for entry and exit conditions� and for loop invariants� If all the veri�cation
conditions can be proven� one has demonstrated partial correctness of the program� That is�
if the program terminates� then it has ful�lled its speci�cation�

Penner de�ned a module to read in regular expressions that describe the microsyntax to
be scanned� Further� he de�ned a module that synthesizes a �nite state automaton from the
microsyntax� as well as a module that uses this automaton to construct a scanner� Semantic
actions de�ne what to do with each token constructed and are included in the scanner without
veri�cation� The automaton generation algorithm used is adapted from the derivation method
of Brzozowski �Brz�	� using �rst sets�

The research was conducted in Austin in ��
� on a DEC��
� Because of time constraints
only three functions were fully veri�ed �startstate� exp state and ind to char�� For the main
module gen automat it was possible to generate veri�cation conditions which could be checked
by hand� but which were not completely checked by machine�

��� Cohn with LCF

Avra Cohn� perhaps best known for her work in microprocessor veri�cation �Coh

� Coh
�a�
Coh
�b�� wrote a technical report in ��
� �Coh
�� about an experiment using LCF �GMW���
that was based on a proof attempt done together with Robin Milner �CM
��� A precedence
parsing algorithm for expressions is described� and a correctness property for the algorithm
is stated and informally proved� For this a speci�c unparsing algorithm is stated� namely one
that adds the minimum number of brackets necessary to reparse the expression� The theorem

 CHAPTER �� PREVIOUS WORK

is that the parse of the unparse of a tree is equal to that tree� The formalization of the problem
is then described in the logic PPLAMBDA� and the generation of a machine proof in LCF with
the use of ML tactics is discussed�

The parser is de�ned as a set of �� clauses which could be considered to be rewrite rules�
some of which are conditional rules� which are concerned with the priority of the operations�
The algorithm keeps two stacks� one with a forest of parse trees and one with left parentheses
and operators� When a right parenthesis is encountered� a parse tree is constructed with the
top operator on and the one or two parse trees on the top of the parse tree stack� The result is
pushed back onto the parse tree stack and the left bracket removed from the operator stack�

Cohn notes that the theorem to be proven is not true for all trees� as there might be
in�nite trees or trees with unde�ned parts� For this purpose a �well�de�ned� tree predicate
is introduced� The informal proof is one of structural induction on parse trees� and is proven
with the help of some elaborate relations� as the theorem is not compositional� If a string s
parses to a tree t� concatenating s onto a word w may cause the portion of the parse tree
representing s to change� as the priority of the operators may be in�uenced�

This work is interesting� as there are a number of non�compositional and non�distributive
properties that need to be proven in the course of proving a compiler front�end correct� The
ideas used for proof in the relatively �clean� world of expressions do not� however� scale up to
be useful for proof of the correctness of a complete parser�

��� Program Synthesis Work

Recently� there has been some related work in the area of program synthesis on producing
correct compiler front�ends� Program synthesis researchers� who often refer to the kind of
work presented in this thesis as invent�and�verify� attempt to derive correct programs from
speci�cations by applying transformations which have already been proven correct�

One approach was investigated as a part of the �KORSO � Korrekte Software� Project�� A
technical report �KW��� describes the process whereby a speci�cation for scanning is developed�
and then standard program synthesis techniques are applied to obtain �rst a working scanner�
then an e�cient one�

It is interesting to note that the working scanner that was �rst derived is quite similar to the
interpreting scanner that was �invented� for this veri�cation e�ort� The optimization of their
scanner under proven transformations results in a state machine not unlike the deterministic
Rabin�Scott machine described in Chapter ��

��� A VDM Speci�cation for an Earley Parser

Cli� Jones demonstrates in �Jon

� a speci�cation in VDM �Jon�
� for a parser using the Earley
method� The Earley algorithm is a top�down approach that produces all possible parsing trees
for a string in parallel using an LL��� grammar� For parsing PLR

� however� a bottom�up parser
is needed� as it has constructs that can only be described with LR��� grammars and not with
LL��� grammars� For code generation� it was also necessary to obtain a speci�c derivation� the
right derivation� The work of Jones was invaluable in sparking ideas for good invariants for
this proof e�ort� but the presentation given was not mechanically veri�able in NQTHM� as he
uses� among other techniques� �x�point induction�

�sponsored in part by the German Ministry of Research and Technology �BMFT��

���� THE BOYER�MOORE LOGIC �

��	 The Boyer
Moore Logic

This section describes in some detail the logic and theorem prover used in this proof e�ort�
and discusses some of the Boyer�Moore proofs that have been done in the area of compiler
construction� as they apply to the work at hand�

The Boyer�Moore logic� as discussed in �BM��� BM

� permits the statement of recursive�
side�e�ect free functions which are stated as s�expressions in the LISP�like language of the
prover� Theorems� usually stating the equality of two terms or the implication of one term
from another� can also be represented as s�expressions� They can be proved correct with the
Boyer�Moore prover NQTHM� for functions that have already been de�ned in the current
session� using the transformations described below� De�nitions� lemmata� and other rules
introduced during a session are referred to in the logic as events��

����� Proof Method

The theorem prover employs eight basic transformations when attempting to prove a lemma
�BM

��

� decision procedures for propositional calculus� equality� and linear arithmetic

� term rewriting� based on axioms� de�nitions and previously proved lemmata

� application of veri�ed user�supplied simpli�ers called �metafunctions�

� variable renaming to eliminate �destructive� functions in favor of �constructive� ones

� heuristic use of equality hypotheses

� generalization by the replacement of terms by type�restricted variables

� elimination of apparently irrelevant hypotheses

� mathematical induction

The theorem prover also contains many heuristics to orchestrate these basic techniques�
No further detail on the mechanics of the proving techniques will be given here� but a short
description of the syntax of the logic will enable the reader to understand the events that are
presented in this thesis� A tiny example proof is included in order to present the ��avor� of
the proofs�

�A publicly available copy of Robert S� Boyer and J Strother Moore�s theorem prover NQTHM� or Matt
Kaufmann�s interactive proof checker version PC�NQTHM� can be obtained from Internet host ftp�cli�com
��������������� by anonymous ftp�

pub
nqthm
nqthm����� The newest version of the theorem prover
pub
pc�nqthm
pc�nqthm����� The newest version of the proof checker
pub
nqthm�users�archive Archive of the users group
pub
nqthm
nqthm������images Images for sparc� Macintosh� Linux
	��
GCL����

The theorem prover is distributed under a license agreement found in the �le
basis�lisp�� A Lisp compiler
necessary for building the prover is also available at this site� GCL �Gnu Common Lisp� in pub
gcl
gcl�����tgz�
where � is a version number� GCL is also available on Free Software Foundation CD�ROMS� Most importantly�
no registration of any form is required for GCL� which is distributed under a Gnu license�
A World Wide Web home page is o�ered by Computational Logic at http���www�cli�com� Computational

Logic� Inc� Austin� TX� USA is a company that Boyer and Moore founded together with Don Good that does
many types of work in the veri�cation �eld�

�
 CHAPTER �� PREVIOUS WORK

����� Syntax

The syntax of NQTHM is very similar to that of Pure Lisp� but there are some major di�er�
ences�

� The function DEFN is used to de�ne recursive functions in the logic�

�DEFN foo �parameterlist� term�

This will be denoted in this thesis as

Definition� foo �parameterlist� ! term

NQTHM will only accept those functions which adhere to the de�nitional principle�
which among other things requires the termination of each function to be proven� There
is often some e�ort involved in determining a suitable well�founded ordering for the
function parameters so that termination may be proven� It is necessary to demonstrate
termination in order to keep functions like

Definition� russell �x� ! �� russell �x��

from introducing inconsistencies into the logic�

� Four basic data �types�� called shells� are available� literals� natural numbers� negative
integers� and ordered pairs� A shell consists of functions to recognize the types �for the
basic types LITATOM� NUMBERP� NEGATIVEP� LISTP�� construct them �PACK� ADD	� MINUS�
CONS� and access their components �UNPACK� SUB	� NEGATIVE�GUTS�CAR� CDR�� New shells
can be introduced by de�ning names which must not already have been de�ned for these
functions and specifying a base value and domains for the components�

For example� the following shell de�nes a representation for tokens� The constructor is
called mk�token� the base or unde�ned value is nil� the recognizer is tokenp� and the
two components can be accessed by the functions token�name and token�value�� With
�none�of�� any sort of value is acceptable as the component� and a default value of zero
is de�ned for each as well�

�ADD�SHELL mk�token nil tokenp

��token�name �NONE�OF� zero�

�token�value �NONE�OF� zero���

The following notation will be used for such shells�

Event� Add the shell mk�token� with recognizer function symbol tokenp and � accessors�
token�name� with type restriction �none�of� and default value zero� token�value� with type
restriction �none�of� and default value zero�

A type restriction describes what �type� of objects are in the components of each n�tuple
constructed� The type restrictions are either ONE�OF or NONE�OF a set of explicitly given
types� The types must be currently known to the prover�

�I do not use the type restriction facility for components� I had at �rst thought this would o�er a sort of
type�checking for objects of the shell type� and that thus I would not have to check that the type of components
was proper upon construction� However� if a base value is de�ned� then some
obvious� properties properties
such as mk�token �token�name �tok�� token�value �tok�� 	 tok are not true for the base element� In
addition� using this facility excessively can slow down the proofs considerably�

���� THE BOYER�MOORE LOGIC ��

� There are two pre�de�ned Boolean constants �TRUE� and �FALSE�which are abbreviated
T and F� A theorem is proven if it can be reduced to T by the transformations described
above� If it reduces to F it can be either true and not �yet� provable� or false � we have
no information other than being able to inspect the subgoals created�

There is a third possibility � the proof can continue down an in�nite path generating
new levels of subgoals� a very common occurrence� It is seldom the case that a proof
can be found if subgoals have been created to a depth of 	� although there is one proof
documented at CLInc that proved after generating goals at level ��� The only method of
interaction at this point is to break o� the proof with an interrupt command and attempt
to formulate further rewrite rules� or to restate the theorem�

� All functions in the logic must be total� unless the interpreter V
C� is used�� This is
the reason for all non�domain parameters being coerced to a default value� usually �� in
order for the basic function to be a total function� For example� �CAR �� is � in the logic
and �ADD	 T� is 	�

� A conditional function is provided� but it unfortunately does not use Lisp semantics on
a nil condition � �IF NIL X Y� reduces to X because the logic selects the �else� term
if the condition is equal to F� and nil is not equal to F in the logic� This is� however�
mostly a problem for experienced Lisp programmers�

� The function PROVE�LEMMA is used to state a lemma for the functions that have been
de�ned� for example

�PROVE�LEMMA foo�bar �REWRITE�

�IMPLIES �tokenp x� �EQUAL �foo �bar x�� �foo x����

The following representation will be used�

Theorem� foo�bar
tokenp �x� � �foo �bar �x�� ! foo �x��

If the lemma can be reduced to T using the methods described above� foo�bar will be
added to the prover�s database as the rule type speci�ed in the second parameter� in this
case as a rewrite rule� that can rewrite �foo �bar x�� to �foo x� when the hypothesis
�tokenp x� can be established� An optional parameter can be used to give the prover
�hints� on how to proceed with the proof�

� There is a mechanism for introducing axioms into the proof data base� The syntax
is the same as for theorem statements� but uses the keyword ADD�AXIOM� This is very
important for the process of discovering a proof� as one can formulate the intermediate
goals as axioms in order to check whether they are su�cient for proving the main theorem�
The proof can then be �rolled back� to the point where an axiom was introduced� and a
proof of the axiom can be inserted so that in the end the �nal proof builds only on �rst
principles�

�ADD�AXIOM remainder�plus �REWRITE�

�IMPLIES �EQUAL �remainder a c� ��

�EQUAL �remainder �plus b a� c�

�remainder b c����

�It is possible to express functions in a quoted form and apply this interpreter to that form� In this manner
it is possible to prove that the russell function mentioned above is nonterminating� See �BM��� pp�	����� for
a detailed description of V
C��

�� CHAPTER �� PREVIOUS WORK

The axioms that are needed in this thesis are enclosed in a double box� as are all theorems
proven with the use of axioms� to set them o� from the theorems�

Axiom� remainder�plus
��a mod c� ! �� � ���b " a� mod c� ! �b mod c��

It is often useful� especially in areas where theorems from number theory are needed� to
conduct the intricate proofs of the theorems separately and then use the statement as an
axiom� One must� however� be extremely careful about using axioms that have not been
veri�ed� It is very di�cult to formulate such axioms and one often overlooks a degenerate
case which will make the axiom state a falsehood� The prover can� of course� use such
an axiom to prove pretty much anything� and often does�

The prover� called NQTHM�� is in a basic state called ground�zero� or boot�strap when
it is �rst executed� This basic state contains no lemmata or shells other than arithmetic for
the natural numbers� and list construction in the proof data base� As de�nitions are accepted
and theorems proven� they are added to the data base and used in future proof attempts� The
prover will use the most recently proven theorems �rst� which o�ers the user another method
of guiding the prover�

����� Interactive Proof Checker

There is a major �patch� on the prover available that was extremely useful in the proof discovery
process described in this thesis� PC�NQTHM� This is an interactive proof checker that can be
loaded on top of NQTHM� This o�ers the user access to the transformational tools that the
prover uses� but they can be applied in a user�speci�ed order� In this manner not only proofs
that the prover will not attempt� for example a second level of induction� but also intricate
rewriting can be achieved�

In particular� one can dive into a term� have PC�NQTHM display the applicable rewrite
rules� choose one and specify a particular substitution� and then rewrite� In this manner one
can more readily copy a hand proof� and along the way �nd appropriate rewrite rules to guide
NQTHM to the same conclusion� Working with PC�NQTHM also teaches one a lot about the
mechanics of proving� as one can see the e�ect of every single step� In particular� one often
�nds patent falsehoods that never get reported on the description level of the proof� but which
are used immediately to rewrite to some other� rather mystifying term� With this knowledge
it is often very easy to discover the necessary hypotheses for a theorem �mostly to exclude
degenerate cases� that avoid this falsehood�

����� Example Proof

The following is a trivial proof generated by NQTHM� It uses all the transformation functions
except for generalization� Interestingly� reversing only the names of the parameters in the
statement of the problem � which does not change the validity of the theorem# � will cause the
prover to enter an in�nite rewriting loop�

�A previous version was known as THM� The newer version has a formulation of a ��quanti�er that was
the basis for the acronym for �New Quanti�ed THM��

�
Ground zero� is the point at which a bomb detonates�

���� THE BOYER�MOORE LOGIC ��

This is an example of the proof of a simple arithmetic theorem� The function TIMES �a
satellite of the ground zero BOOT�STRAP� is de�ned to be

�DEFN TIMES �X Y�
�IF �ZEROP X�

�
�PLUS Y �TIMES �SUB	 X� Y����

The prover prints out ��� when it is waiting for input� and then writes a running com�
mentary to the proof� Terms that are given names that begin with an �$� are subgoals that are
pushed and worked on later� When the prover selects induction� it states the induction scheme
�in this case on the construction of natural numbers�� Note that two of the goals pushed are
important theorems� the right zero of times and the distributivity of plus through times�

��prove�lemma commutativity�of�times �rewrite�
�equal �times x z�

�times z x���

Give the conjecture the name ���

We will appeal to induction� Two inductions are suggested by terms in
the conjecture� both of which are flawed� We limit our consideration to the
two suggested by the largest number of non�primitive recursive functions in the
conjecture� Since both of these are equally likely� we will choose
arbitrarily� We will induct according to the following scheme	

�AND �IMPLIES �ZEROP X� �p X Z��
�IMPLIES �AND �NOT �ZEROP X�� �p �SUB� X� Z��

�p X Z����

Linear arithmetic� the lemma COUNT�NUMBERP� and the definition of ZEROP inform
us that the measure �COUNT X� decreases according to the well�founded relation
LESSP in each induction step of the scheme� The above induction scheme
produces the following two new conjectures	

Case
� �IMPLIES �ZEROP X�
�EQUAL �TIMES X Z� �TIMES Z X����

This simplifies� expanding the functions ZEROP� EQUAL� and TIMES� to the
following two new conjectures	

Case
�
�
�IMPLIES �EQUAL X ��

�EQUAL � �TIMES Z �����

This again simplifies� obviously� to	

�EQUAL � �TIMES Z ����

which we will name �����

Case
���
�IMPLIES �NOT �NUMBERP X��

�EQUAL � �TIMES Z X����

Name the above subgoal ���
�

Case �� �IMPLIES �AND �NOT �ZEROP X��
�EQUAL �TIMES �SUB� X� Z�

�TIMES Z �SUB� X����
�EQUAL �TIMES X Z� �TIMES Z X����

This simplifies� opening up ZEROP and TIMES� to the new conjecture	

�IMPLIES �AND �NOT �EQUAL X ���
�NUMBERP X�
�EQUAL �TIMES �SUB� X� Z�

�TIMES Z �SUB� X����
�EQUAL �PLUS Z �TIMES Z �SUB� X���

�TIMES Z X����

Applying the lemma SUB��ELIM� replace X by �ADD� V� to eliminate �SUB� X��
We employ the type restriction lemma noted when SUB� was introduced to
restrict the new variable� This produces the new conjecture	

�IMPLIES �AND �NUMBERP V�
�NOT �EQUAL �ADD� V� ���

�	 CHAPTER �� PREVIOUS WORK

�EQUAL �TIMES V Z� �TIMES Z V���
�EQUAL �PLUS Z �TIMES Z V��

�TIMES Z �ADD� V�����

which further simplifies� obviously� to	

�IMPLIES �AND �NUMBERP V�
�EQUAL �TIMES V Z� �TIMES Z V���

�EQUAL �PLUS Z �TIMES V Z��
�TIMES Z �ADD� V�����

We now use the above equality hypothesis by substituting �TIMES Z V�
for �TIMES V Z� and throwing away the equality� This generates	

�IMPLIES �NUMBERP V�
�EQUAL �PLUS Z �TIMES Z V��

�TIMES Z �ADD� V�����

Name the above subgoal �����

We will appeal to induction� There are three plausible inductions�
However� they merge into one likely candidate induction� We will induct
according to the following scheme	

�AND �IMPLIES �ZEROP Z� �p Z V��
�IMPLIES �AND �NOT �ZEROP Z�� �p �SUB� Z� V��

�p Z V����

Linear arithmetic� the lemma COUNT�NUMBERP� and the definition of ZEROP
establish that the measure �COUNT Z� decreases according to the well�founded
relation LESSP in each induction step of the scheme� The above induction
scheme leads to the following two new formulas	

Case
� �IMPLIES �AND �ZEROP Z� �NUMBERP V��
�EQUAL �PLUS Z �TIMES Z V��

�TIMES Z �ADD� V�����

This simplifies� expanding the functions ZEROP� EQUAL� TIMES� PLUS�
and NUMBERP� to	

T�

Case �� �IMPLIES �AND �NOT �ZEROP Z��
�EQUAL �PLUS �SUB� Z� �TIMES �SUB� Z� V��

�TIMES �SUB� Z� �ADD� V���
�NUMBERP V��

�EQUAL �PLUS Z �TIMES Z V��
�TIMES Z �ADD� V�����

This simplifies� applying SUB��ADD�� and opening up ZEROP� TIMES� and PLUS�
to the formula	

�IMPLIES �AND �NOT �EQUAL Z ���
�NUMBERP Z�
�EQUAL �PLUS �SUB� Z� �TIMES �SUB� Z� V��

�TIMES �SUB� Z� �ADD� V���
�NUMBERP V��

�EQUAL �PLUS Z V �TIMES �SUB� Z� V��
�ADD� �PLUS V �TIMES �SUB� Z� �ADD� V�������

This again simplifies� using linear arithmetic� to	

T�

That finishes the proof of �����

So let us turn our attention to	

�IMPLIES �NOT �NUMBERP X��
�EQUAL � �TIMES Z X����

named ���
 above� We will try to prove it by induction� There is only one
suggested induction� We will induct according to the following scheme	

�AND �IMPLIES �ZEROP Z� �p Z X��
�IMPLIES �AND �NOT �ZEROP Z�� �p �SUB� Z� X��

�p Z X����

Linear arithmetic� the lemma COUNT�NUMBERP� and the definition of ZEROP can be
used to establish that the measure �COUNT Z� decreases according to the
well�founded relation LESSP in each induction step of the scheme� The above
induction scheme leads to the following two new formulas	

Case
� �IMPLIES �AND �ZEROP Z� �NOT �NUMBERP X���

���� THE BOYER�MOORE LOGIC ��

�EQUAL � �TIMES Z X����

This simplifies� opening up the definitions of ZEROP� EQUAL� and TIMES� to	

T�

Case �� �IMPLIES �AND �NOT �ZEROP Z��
�EQUAL � �TIMES �SUB� Z� X��
�NOT �NUMBERP X���

�EQUAL � �TIMES Z X����

This simplifies� unfolding the definitions of ZEROP� TIMES� NUMBERP� PLUS�
and EQUAL� to	

T�

That finishes the proof of ���
�

So we now return to	

�EQUAL � �TIMES Z ����

named ���� above� We will appeal to induction� There is only one plausible
induction� We will induct according to the following scheme	

�AND �IMPLIES �ZEROP Z� �p Z��
�IMPLIES �AND �NOT �ZEROP Z�� �p �SUB� Z���

�p Z����

Linear arithmetic� the lemma COUNT�NUMBERP� and the definition of ZEROP
establish that the measure �COUNT Z� decreases according to the well�founded
relation LESSP in each induction step of the scheme� The above induction
scheme generates the following two new formulas	

Case
� �IMPLIES �ZEROP Z�
�EQUAL � �TIMES Z �����

This simplifies� opening up the definitions of ZEROP� TIMES� and EQUAL� to	

T�

Case �� �IMPLIES �AND �NOT �ZEROP Z��
�EQUAL � �TIMES �SUB� Z� ����

�EQUAL � �TIMES Z �����

This simplifies� expanding the definitions of ZEROP� TIMES� PLUS� and EQUAL�
to	

T�

That finishes the proof of ����� which also finishes the proof of
��� Q�E�D�

 ��� ��
 ��� �
COMMUTATIVITY�OF�TIMES
�

����	 Compiler Proofs with the Boyer
Moore Prover

This section discusses prior usage of the Boyer�Moore prover in proving theorems about com�
pilers or portions of compilers� The previous sections discussed work with di�erent veri�ers in
the area of scanning and parsing� This section will brie�y mention the use of the Boyer�Moore
prover in the area of code generation�

Short Stack

A number of researchers at CLInc have used NQTHM to prove a remarkably complex compiler
to be correct� Starting from an s�expression representation for the abstract syntax of a subset
of the language Gypsy� William D� Young �You
�� proved the correctness of a code generator
that produces code for an assembly language called Piton� J Moore then veri�ed� as described
in �Moo

�� the transformation of this assembly language to machine code for a hypothetical
machine� the FM
�
�� Warren Hunt veri�ed the design of this microprocessor� as discussed
in �Hun
��� and went on to design a similar microprocessor called the FM
�
�� Its successor�

�� CHAPTER �� PREVIOUS WORK

the FM�

�� was eventually produced � and worked as speci�ed�

The results were interconnected to describe a complete veri�ed system for transforming
abstract syntax to machine instructions at the gate array level �BHMY
��� They call their
system the �short stack�� as it can be seen as a number of individual proofs that can be
stacked or composed with one another� provided that some appropriate �glue� lemmata can
be proven which show that the results of one stage are permissible as input to the next one�

Proof Movie

The ProCoS compiler veri�cation group at Royal Holloway Bedford New College in England
and the Christian�Albrechts�University at Kiel in Germany adapted a simple expression com�
piler problem �rst discussed by McCarthy and Painter �MP��� as their benchmark for testing
the usefulness of mechanical veri�cation systems for conducting compiler proofs� In �BBMS
��
the speci�cation for this simple compiler� which can only translate assignment statements with
expressions containing constants or variables� and which can only add operators into machine
language statements for a two�address machine is given� This compiler is called the add�assign
compiler�

During a visit at CLInc� William D� �Bill� Young and I proved the correctness of a compiler
for the add�assign language with NQTHM� The discovery of that proof is discussed in detail in
�WW��a�� The idea of using this type of minimal compiler proof is quite useful when one wants
to prove the correctness of further constructs� The new construct is added to the basic add�
assign compiler along with a statement of correctness� and the proof is now quite focused on
exactly what is necessary to prove the correctness of the new construct� Young demonstrated
this by enhancing the add�assign compiler to include a while�statement��

Machine Code Program Correctness

Yuan Yu� while at the University of Texas in Austin� used NQTHM to formally specify the
machine code of the Motorola MC�

�
 microcomputer� He then proved many translations to
this machine code to be correct� among them

� a binary search program� a greatest common division algorithm� a linear time majority
vote algorithm� and Hoare�s quicksort program written in C and translated by Gnu C�

� a program to compute integer square roots written in Ada and translated by the Verdix
Ada compiler�

� and twenty�one of the twenty�two C String Library functions from the Berkeley Unix C
String Library�

These proofs are very interesting� as the machine involved is not a hypothetical one� but a
commercially available microprocessor�

Gloess with the Boyer�Moore Prover

Paul Gloess� while an International Fellow at SRI International� conducted an experiment with
the �rst Boyer�Moore prover� THM� to prove the correctness of a simple parser of expressions�
The proof required a total of �	� functions and lemmata�

�Glo

� describes the problem somewhat informally� without the use of a grammar� and
de�nes trees by example� The main theorem proven states that if X is a proper tree� then

�email from young�cli�com� July 	� ����

���� THE BOYER�MOORE LOGIC ��

unparsing ��printing�� the tree and then reparsing it ��evaluating the expression�� will result
in the same tree�

�parse�unparse�tree�� ! tree�

This is a typical statement of the problem for side�stepping the normalization question� Unpars�
ing a tree will often result in ambiguous concrete sequences� as some structuring information
such as parentheses can be added at will� Because of this� a normalization must usually be
speci�ed so that it can be proven that the unparse of the parse of a sequence is equal to the
normalization of the sequence�

The expressions to be parsed consist of atomic symbols� binary and unary operators� and
brackets� Each subexpression � including a term with a unary operator � must be bracketed�
but no extraneous brackets are permitted� The algorithm implements the shift of symbols from
the input onto a stack until the stack contains an open parenthesis followed by a complete
expression and an operator is the next symbol in the input� This operator is the operator
for the outer pair of brackets� The algorithm now checks that the rest of the input after the
operator comprises a valid expression� Thus� the algorithm �nds the inner binary operator�
and creates a tree with this operator as the root� Using the left sub�expression as the �rst
branch and the right sub�expression as the second branch� it recurses on each sub�expression�

The author states that the complicated and extremely ine�cient algorithm was not chosen to
facilitate the proof� but because the LL��� grammar of expressions that was used needed mutual
recursion� which cannot be directly expressed in the language of the prover �although there
are methods of modeling such a mutual recursion�� Instead� a highly existentially quanti�ed
de�nition was used

s is an expression ��

s is a string of one atom

or � op�operator� � s��expression � s ! ��� kk op kk s� kk ���

or � op�operator� � s��s��expression � s ! ��� kk s� kk op kk s� kk ���

and the existential quanti�cations were implemented by witness loops explicitly searching for
an instantiation� Gloess states that he uses parsing theory and the fact that �a proper initial
segment of an expression is not an expression� as a key lemma in his proof� This is only true
for this explicitly parenthesized expression language� not for expressions in general�

Gloess concludes with an outlook that begins with this Fermatian note � �A very elegant
parser has recently been o�ered to us� Lack of space does not permit us to include it here
�� � � ��� The problem with this parser seems to be that THM is not capable of proving the
termination of the algorithm� and thus will not accept the parser de�nition�

Other areas of use

This is a partial list of theorems that have been proven with NQTHM or PC�NQTHM� The
items without direct citations are either part of the examples directories in the �tar �les� or
are described in the ���	 research report published by Computational Logic and available at
http���www�cli�com�reviews�
��index�html� The server www�cli�com also contains a list
of available technical reports that can be ordered on�line�

� Mathematics

� Prime factorization uniqueness �BM���

� Unsolvability of the halting problem �BM
	b�

�
 CHAPTER �� PREVIOUS WORK

� RSA public key encryption algorithm is invertible �BM
	c�

� Gau� Law of Quadratic Reciprocity �Rus���

� Church�Rosser Theorem �Sha
��

� G�odel�s incompleteness theorem �Sha
��

� Irrationality of the square root of �

� Exponent two version of Ramsey�s Theorem

� Schroeder�Bernstein Theorem

� Koening�s Tree Lemma

� Group Theory lemmata �Yu�
�

� Wilson�s Theorem �Rus
��

� Turing Completeness of Pure Lisp �BM
	a�

� Hardware

� Hypothetical processor FM
�
� �Hun
��

� Motorola MC �

�
 �BY���

� Processor FM �

�

� Railroad gate controller

� Fuzzy logic controller

� Parameterized hardware modules �VCDM�
� VVCDM���

� Synchronous circuits �Bro
��

� Theorem proving

� Ground resolution prover

� Theorem about generalization �Kau���

� Various

� Short Stack �Compiler for Gypsy to FM
�
� machine code� �BHMY
��

� Towers of Hanoi

� MACH Kernel speci�cation

� Scheduling theorem for real�time operating system

� Implementation of an applicative language with Dynamic Storage Allocation

� Simple real�time control problem �cross�wind navigational system�

����� Suitableness for this Proof

People have often advised me� during this proof attempt� to switch to a di�erent theorem
prover� None� it would seem� are exactly well�suited to the proofs desired� but each will have
one or the other feature that would be interesting to use at speci�c points in the proof�

Often� so�called �modern� theorem provers o�er greater expressiveness or more ways to
gloss over problematic areas of a proof by liberal use of axiomatization� However many times
the greater expressiveness is bought at the price of less power� That is� there are many
things that can be expressed� but not proven� And many of the short cuts involve potentially
dangerous axioms � one can prove anything with inconsistent axioms�

���� THE BOYER�MOORE LOGIC ��

The Boyer�Moore prover NQTHM is an �old� system� in that it has its roots in the early

�s� It is however a mature system� in that many researchers have used the prover whom
are not directly involved with the development of the system� This is in contrast to other
systems� for which the most successful users are usually a small circle of persons close to the
original developers� NQTHM o�ers a wide body of experience in using the system� and there
are a number of libraries and tools available that can make the search for proof somewhat less
painful� It is still a lot of work� and the learning curve is still quite steep � but much of that
seems to be learning to use rigorous proof methods� Only when a theorem has been proven on
paper is there a chance of getting the theorem prover to do likewise�

An anonymous referee to one of my papers noted that working with NQTHM is an attempt
to coax a stubborn� obnoxious prover to assent to the obvious � an apt description for the
frustrations involved in learning to use it� When one has succeeded� however� in stating a
problem in a manner that is amenable to proof and proving it with NQTHM� then one can be
reasonable sure that it is indeed correct�

In summary we can say that while NQTHM has an extremely primitive user interface� it
is still quite suitable to the work at hand� It is available� stable� and o�ers a wide range of
examples of proofs� in di�erent �elds and in the compiler application area� as an experience
base�

�
 CHAPTER �� PREVIOUS WORK

Chapter �

A Mechanical Proof� NFSA � DFSA

This chapter discusses a mechanical proof of the equivalence of nondeterministic and determ�
inistic �nite state automata� This proof is a key proof in both scanning and in the construction
of parser tables� The theoretical basis of this proof is discussed� as �rst published by Rabin
and Scott� Then a constructive proof in NQTHM is presented of the equivalence of the two
automata using the same construction algorithm� followed by a comparison with an existential
proof in NQTHM done by William D� Young from CLInc�

��� The Hand Proof� Rabin�Scott

Rabin and Scott �RS��� published a proof of the equivalence of nondeterministic �nite state
automata �NFSA� and deterministic �nite state automata �DFSA� using the ideas for a con�
struction method that J�R� Myhill put forth in a technical report �Myh���� This proof was
the basis for many further proofs in the area of parsing theory� and is certainly responsible
for making the construction of scanner and parser generators feasible� The proof structure
was used as the starting point for the mechanical veri�cation� It is reproduced here verbatim
enclosed in boxes and discussed in detail� in order to better contrast it with the mechanical
proof� Their �rst de�nition is of a �nite automaton��

De�nition � A ��nite� automaton over the alphabet % is a system A � �S� M�
so� F�� where S is a �nite non�empty set �the internal states of A�� M is a function
de�ned on the Cartesian product S	% of all pairs of states and symbols with values
in S �the table of transitions or moves of A� s� is an element of S �the initial state
of A�� and F is a subset of S �the designated �nal states of A��

Since M is a total function that returns only one state� as discussed just after this de�nition�
this is a deterministic automaton� The function M is extended to S 	 T �T is what would be
called %� today� by de�ning

M�s�&� ! s�
 s � S

and

M�s� x�� ! M�M�s� x�� ���
 s � S� x � T� � � %�

�The numbering of the de�nitions is the numbering used in �RS����

��

�� CHAPTER �� A MECHANICAL PROOF� NFSA � DFSA

They then characterize mathematically the set of tapes which can be recognized by such an
automaton and prove some theorems about automata equivalence� Then the nondeterministic
operation of an automaton is de�ned �RS��� p� ��
��

De�nition � A nondeterministic ��nite� automaton over the alphabet % is a sys�
tem A ! �S�M� S�� F � where S is a �nite set� M is a function of S	% with values
in the set of all subsets of S� and S� and F are subsets of S�

Instead of one start state such an automaton has a set of states S� as the starting points�
Note that this function M cannot easily be extended to S 	 T because the result of M is a
subset of %� not an element� So they speak of an automaton accepting a tape � that was the
current idea of a machine� a box taking a tape input and perhaps producing a tape output �
when there is at least one �winning combination of choices of states leading to a designated
�nal state�� They de�ne the set T �A� to be the set of all tapes accepted by an automaton A�

De�nition �
 Let A be a nondeterministic automaton� The set T �A� of tapes
accepted by A is the collection of all tapes x ! ���� � � ��n�� for which there exists
a sequence s�� s�� � � � � sn of internal states of A such that

�i� s� is in S�	

�ii� si is in M�si��� �i���� for i ! �� �� � � � � n	�

�iii� sn is in F �

The �rst state must be a member of the set of starting states� each state in the middle
of the sequence of states must be a member of the mapping of the previous state and the
corresponding input symbol from the tape� and the last state must be a member of the �nal
states� This is a major hindrance to a mechanical proof in the absence of quanti�cation� as
such a sequence has to be constructed and its existence may not be hypothesized�

The authors note that if M�s� �� consists of exactly one internal state for each s � S and
� � %� it is deterministic�� Thus deterministic automata are a special case of nondetermin�
istic automata� A construction algorithm is then given for �nding an equivalent deterministic
automaton for any nondeterministic automaton �RS��� p� �����

De�nition �� Let A ! �S�M� S�� F � be a nondeterministic automaton� D�A� is
the system �T�N� t�� G� where T is the set of all subsets of S� N is a function on
T 	% such that N�t� �� is the union of the sets M�s� �� for s in t� t� ! S�� and G
is the set of all subsets of S containing at least one member of F �

In constructing the equivalent deterministic machine� the power set of all nondeterministic
states is used as the set of states� This set is very large� but �nite if the basis is �nite� The
nondeterministic transition function M results in a set of states from S� so the result of the
transition function N is the union of subsets of S

S
s�tM�s� ��� Thus it is also a subset of

�An isomorphic automaton is also deterministic if there is at most one internal state � it is not necessary
for M be a total function from S ��� �S �

���� THE HAND PROOF� RABIN	SCOTT ��

S and a member of the power set of S� The starting state is that element of the power set
corresponding to the set of starting states in A�

Thus there are two quite di�erent de�nitions for FSA� although Rabin and Scott state that
�p���
� �ordinary automata are special cases of nondeterministic automata� and we shall freely
identify the ordinary machines with their counterparts�� i�e� nondeterministic automata with
exactly one internal state in M for each state and symbol pair� De�nition � gave a deterministic
automaton for which the state reached from the start state by tape moves is directly recursively
computable because the range of M is exactly one of the domain elements of M � In De�nition
� the range of M is a set of states� but the corresponding domain element is just a state� so that
a simple recursive computation is not applicable� This second automaton is nondeterministic�
but special instances � with only singleton sets in the range of M � are deterministic� The
constructed automaton from De�nition �� is deterministic in the sense of De�nition ��

There are subtle di�erences between the two de�nitions� speci�cally the starting states �
a single state or a set of states � and the signature of the transition function� One de�nition
is directly composable to determine M �M �s� ���� ���� the other is not� If De�nition � were
to extend the domain component of M to be a set of states and to change the start from a
state to a set of states� an automaton would be obtained that is directly recursively computable
for both nondeterministic and deterministic automata� This will be the de�nition used in the
mechanical proof in Section ����

Rabin and Scott�s proof for the equivalence of the automata A and D�A� is as follows�
Note that in this proof� only the successful paths through the NFSA for a tape are considered�
Actually� as will be shown in the mechanical proof� a more general theorem is the case � all
paths for a tape through a NFSA are exactly mirrored in the DFSA� in as far as they are
de�ned in the NFSA� and thus if a path reaches a �nal state in the NFSA it will also reach a
�nal state in the corresponding DFSA�

Theorem �� If A is a nondeterministic automaton� then T �A� ! T �D�A���

Proof
 Assume �rst that a tape x ! ���� � � ��n�� is in T �A� and let s�� s�� � � � � sn
be a sequence of internal states satisfying the conditions of De�nition �
� We show
by induction that for k � n� sk is in N�t�� �xk�� For k !
� N�t�� �xk� ! N�to�&� !
t� ! S� and we were given that s� is in S��

At this point the trivial step is missing that if s� is in F� then S� will be a member of G�
as it contains at least one member of F� and thus condition �iii� of De�nition �
 holds�

Assume the result for k
�� By de�nition� N�t�� �xk� ! N�N�t�� �xk���� �k���� But
we have assumed sk�� is in N�t�� �xk��� so that from the de�nition of N we have
M�sk��� �k��� � N�t�� �xk�� However� sk is in M�sk��� �k���� and so the result is
established� In particular sn is in N�t�� �xn� ! N�t�� x�� and since sn is in F� we
have N�t�� x� in G� which proves that x is in T �D�A��� Hence we have shown that
T �A� � T �D�A��

This is very similar to the mechanical proof as conducted below� The authors use � in the
proof� but surely � is meant here�

�	 CHAPTER �� A MECHANICAL PROOF� NFSA � DFSA

Assume next that a tape x ! ��� ��� � � � � �n is in T �D�A��� Let for each k � n� tk !
N�t�� �xk�� We shall work backwards� First� we know that tn is in G� Let then sn
be any internal state of A such that sn is in tn and sn is in F �

This is quite a hidden existential quanti�cation � sn is any of the states from tn � F � The
intersection is not empty� as tn � G has been assumed� and all elements of G must have a
non�empty intersection with F � This comes to light in the mechanical proof in lemmata such as
member�dstate�dfsa�final�states� The proof continues with a sort of backwards induction
argument�

Since sn is in tn ! N�t�� �xn� ! N�tn��� �n���� we have from the de�nition of N
that sn is in M�sn��� �n��� for some sn�� in tn��� But tn�� ! N�t�� �xn��� !
N�tn��� �n���� so that sn�� is in M�sn��� �n��� for some sn�� in tn��� Continuing
in this way we may obtain a sequence� sn� sn��� sn��� � � � � s� such that sk is in tk �
sk is in M�sk��� �k�i�� for k �
� and sn is in F � Since t� ! S�� we also have s� in
S�� which proves that x is in T �A�� Thus� T �D�A�� � T �A�� which completes the
proof�

In Sippu and Soisalon�Soininen �SSS

� p�

�
�� there is a similar proof suggested� There
the deterministic transition function is named GOTO� as it is when used to construct the viable
pre�x recognizer for an LR�Parser�

��� A Constructive Proof

Rabin and Scott made use of existential quanti�cation in their proof of the automaton equi�
valence� The basic version of the Boyer�Moore theorem prover does not provide existential
quanti�cation�� My intent is to do the proof completely from �rst principles without resorting
to such �higher� constructs� Section ��� will describe a proof using explicit quanti�cation as
conducted by a researcher at CLInc�

The �rst implementation attempt of the Rabin�Scott de�nitions was di�cult� Because of
the non�composability problem of the transition function and the confusion over whether the
start state should be just a state or a set of states� it was not possible to prove anything about
the implemented de�nitions� Only after observing the changes necessary to make deterministic
automata a special case of nondeterministic ones � �rst de�ning the transition function on a
set of states and a symbol to return a set of states and then beginning with a set of states �
was it possible to prove anything interesting� This was now possible because the computation
function was now the same in both cases�

In this section I will �rst de�ne recursive functions to compute a deterministic automaton
given a nondeterministic one� I will not further discuss the implementations that did not work�
Then the proof that the resulting automaton is deterministic will be given� along with the proof
that it is equivalent to the original nondeterministic automaton�

�Although there is an extension included in the new version of the prover� NQTHM������ which provides a
mechanism for introducing it�

���� A CONSTRUCTIVE PROOF ��

����� Automaton De�nition

First of all� de�nitions are introduced in order to obtain a deterministic FSA from a non�
deterministic one� The �rst concept needed is that of a �nite state automaton constructor� A
FSA consists of an alphabet� a set of states� a set of start states� a transition table and a set
of �nal states�

Event� Add the shell fsa� � with recognizer function symbol fsap� and � accessors� alphabet �
with type restriction �none�of� and default value zero� states � with type restriction �none�of�
and default value zero� starts � with type restriction �none�of� and default value zero� table�
with type restriction �none�of� and default value zero� �nals � with type restriction �none�of�
and default value zero�

No restrictions on the structure of the components will be made in the shell itself� as this
would only serve to complicate the proof� Instead� a predicate fsap will be used that recognizes
�good� FSAs� That is something which� in addition to being a fsa�� has the properties of
the alphabet� states� and starts are all being non�empty lists� and of the start and �nal states
being sets which are subsets of the set of states�

This de�nition �grew� during the development of the proof� and the conjuncts are not well
structured� Since rearranging portions of a de�nition can have a profound impact on the proof
� a proof which previously succeeded may not now terminate� � the �clean�up� of this proof
has been limited to elimination of events that were unnecessary in the proof� Note that it was
not necessary for the alphabet to be a set� One may read the listps as meaning �non�empty
collections� and setp as meaning �no duplicate elements in the collection��

Definition�
fsap �auto�
! let al be alphabet �auto��

st be states �auto��
s� be starts �auto��
tr be table �auto��
� be �nals �auto�

in
fsap$ �auto�
� listp �al� � listp �st� � listp �s� �
� subsetp �s� � st�
� setp �st� � setp ���
� subsetp �� � st� endlet

The transition table does not need a shell� It can be constructed as an association list�
which is a list of pairs� The prover knows a few facts about consulting such a table� The �rst
element of the transition table pair is a pair consisting of a state and an input symbol� The
second element is a list of states to which transitions exist� This construction makes it easier
to extend the concept to include ��transitions on the one hand� and it can be used to capture
both the deterministic and the nondeterministic automata on the other� In a deterministic
automaton� the list will have exactly one element in it� Selector functions on a transition table
are also de�ned�

Definition� mk�transition �state� input � nexts� ! cons �cons �state� input�� nexts�

�A simple example of this is the proof given in section ����	� Just changing the name of the variable z to y
results in an in�nite rewrite chain�

�� CHAPTER �� A MECHANICAL PROOF� NFSA � DFSA

Definition� state �trans� ! caar �trans�
Definition� input �trans� ! cdar �trans�
Definition� nexts �trans� ! cdr �trans�

A typical transition from state q to any of states q� r� or s on input a would be expressed as
�mk�transition �q �a ��q r s�� which is just ���q � a� � �q r s��

One of the only errors found by the prover in my construction algorithm implementation was
here � the selection functions for state and input had been exchanged in one of the functions�
This led to the prover not being able to prove anything interesting about the implementation�
The other error� a minor one� concerned the behavior of the system when presented with an
empty nondeterministic table�

A predicate is also needed that recognizes a �well�formed� transition� That is one where
the input is a member of the alphabet� and the states and all the elements of nexts are members
of states� The nexts list must also be a proper list �plistp�� This means it must either be
empty or a list� and never just a literal atom�

Definition�
transitionp �trans � alphabet � states�
! ��input �trans� � alphabet�

� �state �trans� � states�
� subsetp �nexts �trans�� states�
� plistp �nexts �trans���

With the previous predicate the property of a transition table being well formed can be
stated� if all the entries are transitions with respect to the alphabet and the set of states� then
the table is well formed� That means that there are no otherwise well�formed transitions that
contain states or symbols outside the de�ned states and alphabet�

Definition�
wf�table �table� alphabet � states�
! if table � �nil then table ! nil

else transitionp �car �table�� alphabet � states�
� wf�table �cdr �table�� alphabet � states� endif

A nondeterministic �nite state automaton is something that is both a �nite state automaton
and has a transition table which is well formed with respect to the alphabet and the set of
states�

Definition� ndfsap �a� ! �fsap �a� � wf�table �table �a�� alphabet �a�� states �a���

����� Construction of the Deterministic Table

The deterministic transition table is constructed from the nondeterministic transition table
by �rst forming the power set of the nondeterministic states� and then for all elements in the
power set� determining the set of nondeterministic states which are reachable from this state
for each symbol in the alphabet� This set of reachable states is by de�nition also a member of
the power set� and thus also a deterministic state�

�Note the use here and in subsequent de�nitions of the relational operator � used instead of � with the
literal nil� In the Boyer�Moore logic the literal atom nil is not equal to any other literal atom and it is not a
list� This operator means
if a is not a list ���� but must be expressed as
if a is nil or any other literal atom
�����

���� A CONSTRUCTIVE PROOF ��

This construction algorithm is exponential in time and space� There are a number of
optimizations that can be envisioned for it� the most obvious one being the removal of all
unused and unreachable deterministic states� My goal� however� is to �rst prove this algorithm
to be correct � then for any optimization one can attempt to prove that it preserves the integrity
of the transition system�

The function next�states determines the next states in a table for a step from a speci�c
state on a speci�c symbol� That is� the �rst entry in the table for the state�symbol combination
is determined� It returns nil if no entry in the table is found�

Definition�
next�states �table� st � a�
! if table � nil then nil

elseif cons �st � a� ! caar �table� then nexts �car �table��
else next�states �cdr �table�� st � a� endif

During the de�nition phase I proved some �sanity��theorems about the functions that were
de�ned to convince myself that I had indeed implemented the correct function� In this case I
wanted to be sure that if M is a well�formed table� then the result of next�states is a subset
of nstates� This proof is easily completed by the prover�

Theorem� subsetp�next�states
wf�table �m� alphabet � nstates�
� subsetp �next�states �m� state� symbol�� nstates�

A predicate definedp is used to determine when a �state � symbol� pair is de�ned in
a table� This is useful in the proof of two further lemmata� The �rst states that nil is the
result of next�states when the pair is not de�ned� and the second describes the relationship
between next�states and the ground�zero function append�

Definition�
de�nedp �x � table�
! if table � nil then f

else �x ! caar �table�� � de�nedp �x � cdr �table�� endif

Theorem� non�de�nedp�next�state
�� de�nedp �cons �st � a�� table�� � �next�states �table� st � a� ! nil�

Theorem� next�states�append
next�states �append �a� b�� s � x�
! if de�nedp �cons �s � x�� a� then next�states �a� s � x�

else next�states �b� s � x� endif

The deterministic next state is de�ned to be the closure of dstate in M over symbol� This is
the union of all of the nondeterministic next states for each �nondeterministic� state represented
in the deterministic one�

Definition�
dfsa�next�state �dstate� symbol � m�
! if dstate � nil then nil

else next�states �m� car �dstate�� symbol�
� dfsa�next�state �cdr �dstate�� symbol � m� endif

�
 CHAPTER �� A MECHANICAL PROOF� NFSA � DFSA

Note that the NQTHM function union��� is not the set�theoretic union one would like it
to be� Only if the second parameter is a set is the result a set� This is because of the recursive
structure of the function � the second parameter is included in the result untested� I include
it here for documentation purposes�

Definition�
�x � y�
! if listp �x�

then if car �x� � y then cdr �x� � y
else cons �car �x�� cdr �x� � y� endif

else y endif

If the transition table M is a well�formed table and a deterministic state is a subset of the
nondeterministic states� then the deterministic next state will also be a subset of the non�
deterministic states� and thus also a member of the power set�

Theorem� subsetp�dfsa�next�state
�wf�table �m� alphabet � nstates� � subsetp �dstate� nstates��
� subsetp �dfsa�next�state �dstate� symbol � m�� nstates�

One important point has been ignored� in the hand proof� set theory is available and thus
power sets are trivial to use� The theorem prover� however� does not have �real� set theory
built in � it has to be modeled by lists� This does not cause a problem for implementing
functions for determining membership or subset properties� but it is indeed a problem for
determining set equality � the ordering of the elements induced by the list precludes modeling
it by list equality�

A number of tactics were tried to get around this problem� such as de�ning a function
set�equals� This introduces the problem that� while the prover knows quite a lot about
equality and equational reasoning� it knows absolutely nothing about using set�equals unless
it is told� Young suggested using a ordering function to normalize the sets� When a deter�
ministic next state has been constructed� it is then ordered according to a speci�c ordering�

The power set itself� all�subbags� is also not really the power set� but as the name suggests
the collection of all subbags of a base list representing a bag� It will be proven that� should the
base actually be a set� then all�subbags will also return a set� The elements of this �power
set� will� by the manner in which they are constructed� be ordered as in the base� So the
base� in this case the list of the nondeterministic states� will be used as the ordering base in
constructing the deterministic states so that simple list membership and equality can be used�

The function consl conses x onto each member of the list l� The function all�subbags

�rst constructs the subbags for the tail of the list� then conses x onto the front of each element
of the tail subbags list� and then takes the union of both�

Definition�
consl �x � l�
! if listp �l� then cons �cons �x � car �l��� consl �x � cdr �l���

else nil endif

Definition�
all�subbags �l�
! if listp �l�

then let x be all�subbags �cdr �l��
in
x � consl �car �l�� x� endlet

else list �nil� endif

���� A CONSTRUCTIVE PROOF ��

The ordering function order orders the elements of x according to the order of lst� lst

determines a �nite total order for x� by selecting out of lst those elements which are members
of x� If x contained any elements that were not in lst� they will be eliminated in the result�

Definition�
order �x � lst�
! if lst � nil then nil

elseif car �lst� � x then cons �car �lst�� order �x � cdr �lst���
else order �x � cdr �lst�� endif

One deterministic transition can now be de�ned to be a transition from a deterministic
state dstate and a symbol� to the ordering of the deterministic next state on the basis of the
nondeterministic next states�

Definition�
dfsa�next�transition �dstate� symbol � nfsa�table� nfsa�states�
! mk�transition �dstate�

symbol �
list �order �dfsa�next�state �dstate� symbol � nfsa�table�� nfsa�states���

The previous function� which constructs one transition for a deterministic state and a
symbol� is then used to cdr down both the set of deterministic states and the alphabet�

Definition�
dfsa�table�for�symbol �symbol � dstates � nfsa�table� nfsa�states�
! if dstates � nil then nil

else cons �dfsa�next�transition �car �dstates�� symbol � nfsa�table� nfsa�states��
dfsa�table�for�symbol �symbol � cdr �dstates�� nfsa�table� nfsa�states��

endif

Definition�
dfsa�table �alphabet � states � nfsa�table� nfsa�states�
! if alphabet � nil then nil

else append �dfsa�table�for�symbol �car �alphabet�� states � nfsa�table� nfsa�states��
dfsa�table �cdr �alphabet�� states � nfsa�table� nfsa�states�� endif

����� The Deterministic Automaton

In addition to the transition table� the set of states and the set of �nal states has to be
constructed for the deterministic automaton� The alphabet� of course� remains the same�

The starting state in the deterministic automaton is that element of the power set that
contains exactly the starting states of the nondeterministic automaton� Since the NFSA could
have more than one starting state� and thus be a set of states� the starting state for FSAs has
been de�ned to be a set as discussed above� It must be shown for the deterministic automaton
that this set contains just one element� This is trivial by de�nition�

Definition�
dfsa�starts �l � nstates�
! if l � nil then nil

else list �order �l � nstates�� endif

�
 CHAPTER �� A MECHANICAL PROOF� NFSA � DFSA

The �nal states in the deterministic automaton are those elements of the set of deterministic
states which contain at least one �nal state of the nondeterministic automaton� At least
three di�erent implementations were tried before �nding one about which it was possible
to prove non�trivial lemmata� The �rst� and most obvious� implementation was to use the
function disjoint from a library of set�theoretic de�nitions and lemmata used by some of
the researchers at Computational Logic� This just caused chaos� as disjoint worked using a
function delete and there were not many lemmata known about either function�

The next attempt was to use a function intersection from the same library� and de�ne a
deterministic �nal state to be one with a non�empty intersection with the nondeterministic �nal
states� This was only half as chaotic� but involved trying to prove the listp�ness of a result�
Since there are many collections of hypotheses from which the listp�ness of a list results� this
spawned too many attempts to prove totally irrelevant results� Eventually it was seen that it
was not necessary to construct the entire intersection� but only to �nd a witness to the fact
that the intersection is not empty� The function some�member searches down the �rst list for
such a witness� If one is found� T is returned� otherwise F� This turns out to be a typical way to
handle such a problem in NQTHM � �nd a witness to the existentially postulated relationship�

Definition�
some�member �l
 � l� �
! if l
 � nil then f

elseif car �l
 � � l� then t
else some�member �cdr �l
 �� l� � endif

Definition�
dfsa��nal�states �dstates � nfsa��nals�
! if dstates � nil then nil

elseif some�member �car �dstates�� nfsa��nals�
then cons �car �dstates�� dfsa��nal�states �cdr �dstates�� nfsa��nals��
else dfsa��nal�states �cdr �dstates�� nfsa��nals� endif

The construction of the deterministic automaton is implemented in the following function�
which applies the functions dfsa�starts� dfsa�table� and dfsa�final�states to appropri�
ate components of the nondeterministic automaton�

Definition�
generate�dfsa �nfsa�
! let nstates be states �nfsa�

in
let dstates be all�subbags �nstates��

alphabet be alphabet �nfsa�
in
fsa$ �alphabet �

dstates �
dfsa�starts �starts �nfsa�� nstates��
dfsa�table �alphabet � dstates � table �nfsa�� nstates��
dfsa��nal�states �dstates � �nals �nfsa�� � endlet endlet

����� The Proof� Basic Theorems

The proof is divided into four sections� some basic theorems� the proof that the generated
automaton is deterministic� the proof that the deterministic one simulates the nondeterministic

���� A CONSTRUCTIVE PROOF ��

one� and the proof that the nondeterministic one simulates the deterministic one� and thus that
they are equivalent� The �rst part of the proof contains a number of lemmata about the basic
functions and their respective interactions� An exact statement of the functions can be found
at the URL given on page ��

A few of the more basic lemmata about sets and subsets were adapted from some of the
libraries that various researchers at Computational Logic have constructed� The full library
was used during the �rst part of the proof attempt� but since that slowed down the proof
considerably as every lemma must be considered� only those lemmata necessary for the proof
were extracted� This had the added advantage that now some proofs would go through that had
not before � some of the many rewrite rules had �red and moved the proof down a completely
wrong path that could not be completed�

The function setp used in this proof is slightly di�erent that the one used by Young in his
proof � if l is not a list then I consider l to be a set� he only considers it to be a set if it is
actually nil and not a literal atom� The lemmata from the libraries express rewrite rules for
the following concerns�

� The relationship of setp with cons� consl� union� and a combination of union and
consl�

� The relationship between member and consl�

� The fact that nothing can be a member of an empty list expressed in two di�erent ways�

� The distributivity of member through union and subsetp through union�

� The re�exivity of subsetp�

� A list is a subset of the union of itself with anything as well as of the list resulting from
consing anything onto it�

� consing an element onto a list extends the length by one�

� If a list is a proper list� that is� if it consists of at least one cons or it is the literal atom
nil� consing an element onto it will not change this property�

� The function member is transitive in the sense that if a � b and b � c then a � c�

� The witness function some�member returns true if there exists an element which is a
member of both lists�

� The distributivity of some�member through subsetp�

� Theorems about the power set function� all�subbags� The power set is always a list�
nil is always a member of it �representing the empty set�� all singleton lists of elements
of the basis set are members of the power set� all elements of the power set are subsets
of the basis� and if the basis is a proper set� then the power set is as well�

The order function that was introduced for simulating set equality created the need for
many rewrite rules pertaining to its relationships with other functions� All in all� there were
many more lemmata proved about order during the proof e�ort than are actually included
in the proof � some of the theorems that had been proven because they were provable and
because they rounded out �order theory� turned out to be very bad rewrite rules� One in
particular which related member� order� and all�subbags� turned out to ��re� at almost
every proof step� An amazing number of lemmata were provable about order despite using
all�subbags� as there were other lemmata to help eliminate it again� When this was detected

�� CHAPTER �� A MECHANICAL PROOF� NFSA � DFSA

while �cleaning up� the proof and the bad rewrite rule was disabled after it served its purpose
proving another theorem� the running time for the proof dropped from �
 minutes to � minutes�
and another dozen rewrite rules turned out to be unnecessary� The following theorems� however�
are necessary for the proof and provable�

� order preserves membership�

� An element is only a member of the result of ordering if it is an element in both the list
to be ordered and the ordering list�

� If ordering leaves a list intact� then it is a member of the power set of the ordering list�
i�e� all members of the power set are ordered according to the basis set �this was the bad
rewrite rule��

� Anything that is ordered on a basis is a member of the power set of that basis�

� If there is some member in common between some ordering and another set� then there
is still a common member if something is consed onto the list to be ordered�

� An ordered list is a subset of the ordering of anything consed onto the list before ordering�

� If there is a common member between an ordered list and another one� then the unordered
list has a common member also�

� A key lemma� if a and b have a common member and b � c� then the ordering of a by c
will have a common member with b�

����	 The Proof� The Generated Automaton is Deterministic

In order to prove that the generated automaton is deterministic� i�e� that there is at most
one following state for each state and symbol pair in the generated table� it will have to be
proven that each step is deterministic� The property of being deterministic is formulated in the
predicate dfsap and the theorem is that the generated DFSA has this property� dfsap states
that an automaton is deterministic if its table is� and that a table is deterministic when all of
the transitions are deterministic� i�e� have
 or � elements in the nexts list�

Definition�
deterministic�transition �tr � alphabet � states�
! �transitionp �tr � alphabet � states� � �length �nexts �tr�� � 	��

Definition�
deterministic�table �table� alphabet � states�
! if table � nil then t

else deterministic�transition �car �table�� alphabet � states�
� deterministic�table �cdr �table�� alphabet � states� endif

Definition�
dfsap �d� ! �fsap �d� � deterministic�table �table �d�� alphabet �d�� states �d���

Theorem� dfsap�generate�dfsa
ndfsap �a� � dfsap �generate�dfsa �a��

In order to prove the theorem dfsap�generate�dfsa� the following lemmata are necessary�
It must be shown that the generated states� �nal states and start states ful�ll the fsap predicate�
i�e� are sets and that the �nals are a subset of the states� etc�

���� A CONSTRUCTIVE PROOF ��

Theorem� dfsa��nal�states�subsetp
subsetp �dfsa��nal�states �dstates � n�nals�� dstates�

Theorem� dfsa��nal�states�member
�z � dfsa��nal�states �x � y�� � �z � x�

Theorem� setp�dfsa��nal�states
setp �dstates� � setp �dfsa��nal�states �dstates � n�nals��

The lemma dfsa�final�states�member is such a bad rewrite rule �it is applied every time
member occurs in a term� that it must be immediately disabled and only used for the proof of
the �nal states being a proper set� It can now be shown that the determistic�table property
distributes through append�

Theorem� deterministic�table�append
deterministic�table �append �a� b�� alphabet � states�
! �deterministic�table �a� alphabet � states� � deterministic�table �b� alphabet � states��

The following auxilliary lemma is a bit strange in that the hypothesis is weaker than
one would expect � it states that the deterministic states are a subset of the power set of
the nondeterministic states� when in fact they are equal� In the equality case� however� the
hypothesis is used by the prover in an entirely di�erent way� The prover could not be convinced
by any means to attempt the induction over the construction of the deterministic states� Using
the subsetp predicate automatically sets up the induction so that this lemma can be proven
and used to prove that the table for one symbol is deterministic�

Theorem� deterministic�table�dfsa�table�for�symbol�
�wf�table �m� alphabet � nstates�
� subsetp �dstates � all�subbags �nstates��
� �symbol � alphabet��
� deterministic�table �dfsa�table�for�symbol �symbol � dstates � m� nstates��

alphabet �
all�subbags �nstates��

Theorem� deterministic�table�dfsa�table�for�symbol
let dstates be all�subbags �nstates�
in

��symbol � alphabet� � wf�table �m� alphabet � nstates��
� deterministic�table �dfsa�table�for�symbol �symbol � dstates �m� nstates��

alphabet �
dstates� endlet

The same thing is repeated for the alphabet � the nondeterministic alphabet and the de�
terministic one are the same� but the proof will only go through if the nondeterministic one is
a subset of the deterministic one�

Theorem� deterministic�table�dfsa�table
�wf�table �m� alphabet � nstates� � subsetp �x � alphabet��
� deterministic�table �dfsa�table �x � all�subbags �nstates�� m� nstates��

alphabet �
all�subbags �nstates��

The lemmata proven above are su�cient to prove the theorem dfsap�generate�dfsa as
stated� without the introduction of any qualifying hypotheses�

�	 CHAPTER �� A MECHANICAL PROOF� NFSA � DFSA

����� The Proof� The DFSA Accepts if the NFSA does

In order to show that the automata are equivalent� it must be shown that if the NFSA accepts a
tape� then the generated DFSA does as well� and vice versa� In this section� the �rst implication
is proven�

Theorem� nfsa�accepts!�dfsa�accepts
accept �nfsa� tape� � accept �generate�dfsa �nfsa�� tape�

It can soon be seen that this is not a theorem if the table is not well formed� The predicate
stating that the nfsa is a proper nondeterministic automaton �ndfsap� is added to the hypo�
thesis� and a number of lemmata can be proven about the relationship of the table constructing
functions with wf�table� However� many of them will disappear by the end of the proof as
they are not really needed�

Of vital importance is the question of acceptance� what does it mean for a tape to be
accepted by a �nite state automaton� The �rst acceptance function was de�ned close to the
proof by Rabin and Scott� A function was de�ned to collect up the following states according
to the table for a set of states and a symbol� and this was used for running the automaton�
The rest of the tape is then run from the set of states reachable from the starting states for the
�rst symbol in the tape�

Definition�
next�states�list �table� states � a�
! if states � nil then nil

else next�states �table� car �states�� a�
� next�states�list �table� cdr �states�� a� endif

Definition�
run �table� states � tape�
! if tape � nil then states

elseif states � nil then nil

else run �table� next�states�list �table� states � car �tape��� cdr �tape�� endif

While this is a reasonable and understandable statement of acceptance� it is not at all easy
to prove anything about it� The problem seems to stem from wanting to prove that� at each
step of the way� the nondeterministic states are a subset of the deterministic state� That is
to say� the components of the deterministic state are nondeterministic states� The start of the
induction� however has an equality� the deterministic start state is equal to the set of all NFSA
start states� equal cannot be used in the base case and subsetp in the induction step� even if
subsetp follows from equal � this just cannot be mangled to �t into an induction scheme�

After much work trying to get the induction scheme right for this statement of acceptance�
another statement was tried� Acceptance now was expressed as the �nals not being disjoint
with the set of states resulting of running the table on the complete tape from the starts� i�e�
they have a common member�

Definition�
new�accept �fsa� tape�
! if fsap �fsa�

then � disjoint �run �table �fsa�� starts �fsa�� tape�� �nals �fsa��
else f endif

���� A CONSTRUCTIVE PROOF ��

This was intended to avoid the intermediate steps in the running of the automaton� and just
prove something about the �nal result� The problem was with the function disjoint� which
was from one of the libraries� Even though the prover knew a number of lemmata about
disjoint� it was not enough� The more that was proven� the more complicated the proofs
became� So another formulation of acceptance was tried� when the intersection of the states
reached and the �nal states is a list� i�e� not empty� then a tape is accepted�

Definition�
newer�accept �fsa� tape�
! if fsap �fsa�

then listp �intersection �run �table �fsa�� starts �fsa�� tape�� �nals �fsa���
else f endif

Since intersection is a library function with a simpler recursive structure� it was thought
that this might help� but exactly the same problems were encountered� As a last resort I
observed that if the intersection is not empty� then there is a common element� so I de�ned a
function to �nd one such common element � some�member� This was a key turning point in
the proof e�ort�

Definition�
newest�accept� �table� states � �nals � tape�
! if tape � nil then some�member �states � �nals�

else newest�accept� �table�
next�states�list �table� states � car �tape���
�nals �
cdr �tape�� endif

Definition�
newest�accept �fsa� tape� ! newest�accept� �table �fsa� � starts �fsa�� �nals �fsa�� tape�

This function was renamed accept and the proof restarted by throwing away all the lem�
mata proved in the meantime� A number of proofs concerning next�state�list are sug�
gested by the proof script� It is discovered that the result of next�state�list is the same
as the construction function for the deterministic next state �nder� The relationship between
dfsa�next�transition and with union can now be shown�

Theorem� next�states�list�same�as�dfsa�next�state
next�states�list �m� nstates � symbol� ! dfsa�next�state �nstates � symbol � m�

Theorem� next�states�dfsa�table�for�symbol
�dstate � dstates�
� �next�states �dfsa�table�for�symbol �c� dstates � ntab� d�� dstate� c�

! nexts �dfsa�next�transition �dstate� c� ntab� d�� �

Theorem� dfsa�next�state�union
dfsa�next�state �cons �a� b�� c� d� ! �next�states �d � a� c� � dfsa�next�state �b� c� d��

The lemma order�final�states was discovered to be necessary by working with PC�
NQTHM� It was �rst introduced as an axiom� and is a key lemma in the proof� It states that if
W is a set of states that has at least one member that is in the nondeterministic �nal states� and
if the �nal states are all members of the nondeterministic states� then the ordering of W on the
NFSA�states will be a member of the deterministic �nal states� It is an instance of the more
general rule� member�dstate�dfsa�final�states� which expresses the relationship between
the �nal states in the nondeterministic and the deterministic automaton�

�� CHAPTER �� A MECHANICAL PROOF� NFSA � DFSA

Theorem� member�dstate�dfsa��nal�states
�some�member �dstate� n�nals� � �dstate � dstates��
� �dstate � dfsa��nal�states �dstates � n�nals��

Theorem� order��nal�states
�subsetp �nfsa��nals � nfsa�states� � some�member �w � nfsa��nals��
� �order �w � nfsa�states�

� dfsa��nal�states �all�subbags �nfsa�states�� nfsa��nals��

A lemma about the ordering of a set being a subset of itself� one about the nondeterministic
next states being a subset of the deterministic states if the nondeterministic starting state is
a member of the deterministic starting state� and a distributivity lemma of subsetp through
dfsa�next�state are also necessary�

Theorem� subsetp�order
subsetp �order �a� b�� a�

Theorem� subsetp�next�states��
�z � b� � subsetp �next�states �v � z � c�� dfsa�next�state �b� c� v��

Theorem� dfsa�next�state�distrib
subsetp �a� b� � subsetp �dfsa�next�state �a� c� v�� dfsa�next�state �b� c� v��

The lemma order�dfsa�next�state�order states that whether or not a state is ordered�
if the table is well formed and the state is a subset of the nondeterministic states �D�� then
the ordering of the result will result in the same list� To prove this key lemma the proof
scheme given in equal�order�subsetp was needed� as well as the proof of each direction of
its hypotheses� The one direction was easy� the deterministic next state of an ordered list is
always a subset of the deterministic next state of the original list� The other direction is only
true when the original list is a subset of the base set used for ordering� However� this is not a
problem as this fact is easily established� An explicit hint to the prover is necessary to force
it to use the proof scheme and the appropriate substitutions for the free variable b�

Theorem� equal�order�subsetp
�subsetp �a� b� � subsetp �b� a�� � �order �a� c� ! order �b� c��

Theorem� subsetp�dfsa�next�state��
subsetp �dfsa�next�state �order �w � d�� c� v�� dfsa�next�state �w � c� v��

Theorem� subsetp�dfsa�next�state���helper
subsetp �dfsa�next�state �order �x � y�� c� v��

dfsa�next�state �order �cons �z � x�� y�� c� v��

Theorem� subsetp�dfsa�next�state��
subsetp �w � d�
� subsetp �dfsa�next�state �w � c� v�� dfsa�next�state �order �w � d�� c� v��

Theorem� order�dfsa�next�state�order
�wf�table �ntab� alphabet � nstates� � subsetp �dstate� nstates��
� �order �dfsa�next�state �order �dstate� nstates�� symbol � ntab�� nstates�

! order �dfsa�next�state �dstate� symbol � ntab�� nstates��

���� A CONSTRUCTIVE PROOF ��

It was also necessary to show that the deterministic next state is a subset of the non�
deterministic states if the table is well formed� A basic rule showing the interaction of the
functions next�states and append is the key lemma in this proof�

Theorem� subsetp�next�states
wf�table �m� alphabet � nstates� � subsetp �next�states �m� state� symbol�� nstates�

Theorem� non�de�nedp�next�state
�� de�nedp �cons �st � a�� table�� � �next�states �table� st � a� ! nil�

Theorem� next�states�append
next�states �append �a� b�� s � x�
! if de�nedp �cons �s � x�� a� then next�states �a� s � x�

else next�states �b� s � x� endif

Theorem� subsetp�dfsa�next�state
�wf�table �m� alphabet � nstates� � subsetp �dstate� nstates��
� subsetp �dfsa�next�state �dstate� symbol � m�� nstates�

In order to show that the next states in the deterministic table for a speci�c symbol is the
dfsa�table�for�symbol two rather esoteric lemma had to be proven� The second� a terrible
rewrite rule� is considered at every subsequent point at which an equality is to be rewritten
�which is most of the time�� and so must be disabled and only enabled for the speci�c lemma
for which it is needed�

Theorem� not�de�ned�next�states�nil
�� de�nedp �cons �s � x�� dfsa�table�for�symbol �x � b� c� d���
� �next�states �dfsa�table �z � b� c� d�� s � x� ! nil�

Theorem� de�nedp�means�equal
de�nedp �cons �s � a�� dfsa�table�for�symbol �x � b� c� d�� � ��a ! x� ! t�

Theorem� next�states�dfsa�table
�a � alphabet�
� �next�states �dfsa�table �alphabet � b� c� d�� s � a�

! next�states �dfsa�table�for�symbol �a� b� c� d�� s � a��

The last problem is the non�recursive function accept� which was used to �wrap� the
recursive statement of the problem� The prover unfolds the de�nition� does not �nd any�
thing interesting to induct on� and gives up� The lemma do�not�push is a copy of the un�
folded version with rather more suggestive names for the parameters� This can be easily
proven now in �ve cases generated by the induction on the length of tape� The theorem
nfsa�accepts��dfsa�accepts is now just a special case of the lemma do�not�push�

Theorem� do�not�push
�subsetp �dstate� nstates�
� subsetp �n�nals � nstates�
� wf�table �ntab� alphabet � nstates�
� all�member �tape� alphabet�
� accept� �ntab� dstate� n�nals � tape��
� accept� �dfsa�table �alphabet � all�subbags �nstates�� ntab� nstates��

list �order �dstate� nstates���
dfsa��nal�states �all�subbags �nstates� � n�nals��
tape�

�
 CHAPTER �� A MECHANICAL PROOF� NFSA � DFSA

Theorem� nfsa�accepts!�dfsa�accepts
�ndfsap �nfsa� � all�member �tape� alphabet �nfsa�� � accept �nfsa� tape��
� accept �generate�dfsa �nfsa�� tape�

The most di�cult direction in the mechanical proof has now been proven without the use
of axioms� The proof could not have been completed without the aid of PC�NQTHM� the
interactive proof�checker added to the prover by Matt Kaufmann� With the aid of this tool�
axioms could be discovered that were necessary for the proof� Then the work could be continued
on those axioms until they too were provable� PC�NQTHM proofs are� however� exceedingly
brittle � name changes� the addition of new rules or even just switching the position of two
hypotheses can �break� the proof� Thus� e�ort had to be expended to �nd a way to prove
each lemma without the help of this tool� It is not always obvious how to do this� but it was
possible for this example�

����� The Proof� The NFSA Accepts if the DFSA does

The proof of the other direction in the equivalence was relatively easy by comparison� There
was only one new theorem that was necessary� the other lemmata were analogous to the other
direction� i�e� we needed a formulation of the theorem with all non�recursive functions unfolded�
The theorem not�some�member�not�member�dfsa�final�states states that a deterministic
state is not a member of the deterministic �nal states if it does not have a member of the
nondeterministic �nal states as one of its members� This theorem was one of a number that
were suggested by PC�NQTHM and eventually proven with its help�

Theorem� member�dfsa��nal�states�some�member
�x � dfsa��nal�states �foo� bar�� � some�member �x � bar�

Theorem� not�some�member�not�member�dfsa��nal�states
�� some�member �w � z ��
� �order �w � d� �� dfsa��nal�states �all�subbags �d� � z ��

Theorem� member�order�dfsa��nal!�some�member
�subsetp �w � d�
� subsetp �z � d�
� �order �w � d� � dfsa��nal�states �all�subbags �d� � z ���
� some�member �w � z �

Now the unfolded version can be proven followed by dfsa�accepts��nfsa�accepts� and
with that the main theorem� that the nondeterministic automaton will accept a tape if and only
if the deterministic one does� can be proven as well�

Theorem� do�not�push�theorem��
�subsetp �w � d�
� subsetp �z � d�
� wf�table �v � x � d�
� all�member �tape� x�
� accept� �dfsa�table �x � all�subbags �d�� v � d��

list �order �w � d���
dfsa��nal�states �all�subbags �d�� z ��
tape��

� accept� �v � w � z � tape�

���� AN EXISTENTIAL PROOF ��

Theorem� dfsa�accepts!�nfsa�accepts
�ndfsap �nfsa�
� all�member �tape� alphabet �nfsa��
� accept �generate�dfsa �nfsa�� tape��
� accept �nfsa� tape�

Theorem� nfsa!dfsa
�ndfsap �nfsa� � all�member �tape� alphabet �nfsa���
� �accept �generate�dfsa �nfsa�� tape� � accept �nfsa� tape��

This proof appears much simpler than the one above� but that is only because a number of
lemmata above were proven in such a general way that they are applicable for both directions
of the equivalence proof�

��� An Existential Proof

William D� Young�� a CLInc reasearcher� has taught automata theory a number of times at
Southwest Texas State University in San Marcos� Texas� and was intrigued by my proof of
automaton equivalence� I encouraged him to use a new extention to NQTHM� which uses
Skolemization for expressing existential quanti�cation� to do the same proof so that the results
could be compared� He recorded his proof in a CLInc internal note �You���� In this section
I will brie�y describe his proof for the purpose of contrasting it with the constructive proof
given above�

����� Construction of the Deterministic Table

The idea of separating the de�nition of a recognizer shell fsa� from a predicate recognizing a
�real� automaton� fsap� is due to him� His predicate� however� is much shorter than mine� He
only demands that the alphabet and set of states be non�empty� the starting states and the �nal
states be subsets of the set of states� and that the �nal states be a proper set� My de�nition
was expanded to include that the start states be a non�empty set as well� and that the set of
states be a proper set �i�e� no duplicate states�� This did complicate my proof� as I had to
prove that the deterministic states generated was indeed a proper set� but this I felt was closer
to the de�nition of a �nite state automaton given in �RS����

The next de�nition he gives is of a transition� He includes in his predicate for recognizing
a transition that it must be a list of length �� My transition de�nition was a bit more general�
ignoring anything that might be beyond the second element in the list de�ning a transition�
He uses a dotted pair with the �rst element itself a dotted pair containing a state and a symbol
for constructing a transition just as I do� although he uses the pair �input � state� where I use
�state � input� as in �RS����

While both scripts contain equivalent de�nitions 	 similarly named for recognizing determ�
inistic transitions and tables� there were some di�erences� My recognizer for nondeterministic
tables was called wf�table� his ndfsa�table�p� This is just a cultural naming di�erence �
VDM�like names vs� LISP�like names�

�I am indebted to him for showing how this example could be proven using the existential quanti�cation
extension� and for the many good ideas� especially the introduction of the ordering to mimic set theory�

�Many of the functions and de�nitions are the same in both scripts� except for the names of the variables or
the ordering of the terms in conjunctions� This can have an e�ect on the proof� as the �rst term in a conjunct
governs the choice of rewrite rule� and the name of a variable is used when a commutative rule is applied � it
can only be used if the names of the variables are not in an alphabetic order� so that there is not an endless
loop of commutative rewrites� Thus� this might have had an e�ect on the proofs� but I have not looked into
this as it is a rather esoteric quirk of the prover�

	
 CHAPTER �� A MECHANICAL PROOF� NFSA � DFSA

The function for constructing a deterministic next state for one deterministic state and one
symbol is structured di�erently � the existential script checks �rst to see if there is actually any
next state constructed before it is added to the table� I had observed that if none is constructed�
the result is nil� and the Boyer�Moore function union does happen to be well�behaved on the
�rst parameter being nil� returning the second parameter� This makes for a slightly simpler
structure of the proof� as there is no case split necessary in this instance� although it is such a
simple split that the prover can prove it on its own�

The idea of using an order function to simulate set theory is due to Bill� However� he proves
a number of theorems about order which turned out to be unnecessary or even detrimental to
the constructive proof� as described above� He was striving for a more complete and compact
theory of ordered lists� It is not known if the existential proof could have been done with fewer
order�theorems�

The next step� the construction of a deterministic transition� is done in one step in the
existential proof� In the constructive proof a non�recursive function� mk�transition is used�
as this is the VDM�idiom I am accustomed to using� It is unnecessary to the proof � it is
automatically unfolded � but I feel that it makes the script slightly more readable�

The construction of the full table is done with equivalent functions� The construction of
starting states� however� is completely di�erent� the constructive proof makes one state with
all of the possible nondeterministic start states� ordering it so that it is a member of the
power set� The existential proof de�nes a function map�list that turns a list of elements
into a list of singleton lists containing the elements� This is not the construction method
as given in �RS���� but interestingly enough� it is also a su�cient set of starting states for
the deterministic automaton# Since no optimization is attempted� the complete power set
automaton is constructed� and any state containing a start state will be su�cient� I felt�
however� that a deterministic machine should just have one start state� and thus use that
element of the power set which just contains all of the nondeterministic starting states as the
deterministic starting state�

The �nal state construction uses di�erent functions to achieve the same goal� I use the
some�member witness function while he uses the library function disjoint�

Running both construction methods results in the same tables for all test cases used� except
for the starting states as discussed above�

����� The Generated Automaton is Deterministic

This is a very similar proof to the constructive one� A number of small lemmata about the
generated �nal states being a subset of the generated states and such are also necessary� This
is clear� since the fsap predicate is involved and it must be demonstrated that what is de�ned
is actually a �nite state automaton� The proofs are quite trivial�

One theorem in the existential proof is unnecessarily complex� next�state�subset� It was
determined in the constructive proof that it is su�cient to state that the nondeterministic table
is well formed when the next�state constructed is a subset of the nondeterministic states� The
existential proof uses three further hypotheses� including one that the next�state constructed
is a proper list� Another theorem includes an unnecessary hypothesis about the deterministic
states being a subset of the power set when actually they are equal� It is not clear if these are
necessary because of the actual function de�nitions� or because the proof is not �polished�
�

	Polishing a proof is an extremely time�consuming activity� One can check which functions are not used�
comment them out� retry the proof� check then to see which ones are not used� etc� until a
steady state� is
achieved� One can also play with theorems having hypotheses� to see if they can be proven without hypotheses
using further� more general lemmata� and if they still are e�ective� Or one can try and �nd more general
theorems� of which the theorems of interest are just special cases� It can be a dangerous undertaking� as small
changes can invalidate the proof� so care must be taken to preserve versions of the proof which still go through�

���� AN EXISTENTIAL PROOF 	�

Other than these cosmetic details� the proofs are in essence the same�

����� The DFSA Accepts if the NFSA does

At this point the proofs diverge� The notion of acceptance used in the existential proof is the
idea of tracing a path for a tape in an automaton� He introduces the following predicate�

Definition�
traces�to��nal �tape� path� fsa�
! let table be next�state�table �fsa�

in
if tape � nil

then listp �path�
� �cdr �path� � nil�
� �car �path� � �nal�states �fsa��

else �car �path� � states �fsa��
� �car �tape� � alphabet �fsa��
� listp �cdr �path��
� �cadr �path� � next�state �table� car �tape�� car �path�� �
� traces�to��nal �cdr �tape�� cdr �path�� fsa� endif endlet

This means that given a tape and a path and an automaton� the path is a valid one for the
tape in the automaton� A valid path is one that is one element longer than the tape� If the
tape is not empty� then the �rst element of the path is a valid state in the automaton� and the
next element is a member of the next states for the pair consisting of the �rst element of the
path and the �rst symbol on the tape �both which are members of their respective sets� states
and alphabet�� If the tape has been exhausted� then there is exactly one element left� and that
is a member of the �nal states� Note that this notion of tracing to a �nal state is irrespective
of speci�c start states� the path is a trace for the tape starting at the �rst element of the path�

The notion of acceptance is now de�ned in terms of this tracing to a �nal state �and is
the same for both kinds of automaton� as in the constructive proof�� The path is� however
anchored to the start states�

Definition�
accepts� �tape� path� fsa�
! �traces�to��nal �tape� path� fsa� � �car �path� � start�states �fsa���

Now the explicit existential quanti�er comes into play� a tape is accepted if there is some
accepting path tracing the tape from a starting state�

Definition �Skolemized�� accepts �tape� fsa� � � path accepts� �tape� path� fsa�

This Skolemization introduces necessary and su�cient axioms to cover the existence of a path�
such that accepts	 returns the value T� See �Kau
�� for more details on the DEFN�SK extension
to the prover�

The proof script contains a number of lemmata relating next�state with append� non�
deterministic with deterministic �nal states� and about the next states in the computed table�

This is found by many users of the prover to be an unnecesssary activity� as it does nothing to further the
proof �it has� after all� been proven�� It may� however� make the proof shorter and more understandable to the
human reader� It would be an interesting area of study to see if� given a proof in the system� a more compact
proof could automatically be found�

	� CHAPTER �� A MECHANICAL PROOF� NFSA � DFSA

Even for the existential proof� some construction is necessary� a function construct�dpath

is de�ned to construct a path from start in a deterministic table� It will only work for the
deterministic automaton� as only the �rst next�state is considered�

Definition�
construct�dpath �tape� start � dtable�
! if tape � nil then list �start�

else cons �start �
construct�dpath �cdr �tape��

car �next�state �dtable� car �tape�� start���
dtable�� endif

Some lemmata about this function are proven� and some� such as the singleton lists being
members of the power set �important because of the way in which the deterministic start
states are constructed�� are necessary before the main theorem can be proven� However� four
USE hints are necessary for this proof� Two use functions that are introduced by DEFN�SK"�
accepts�necc and accepts�suff� one uses an unfolded version of the theorem similar to the
constructive proof� and one gives the substitution so that the singleton�member�power�set

lemma can be used� The su�ciency hint uses the construct�dpath function� strangely enough
using �list �car �path nfsa tape��� as the start state instead of a start from nfsa� This
seems to be a sort of circular de�nition� It appears to imply that a NFSA accepts if a path to
a �nal state exists� not necessarily from a starting state� although the function accepts	 does
involve the starting state�

����� The NFSA Accepts if the DFSA does

The other direction uses two more existential quanti�cations� A function traces�from�start

is introduced that is later proved equivalent to traces�to�final under a set of reasonable
assumptions with a number of rather complicated intermediate lemmata� The �rst existential
quanti�cation asserts the existence of a path that traces from a start state�

Definition �Skolemized��
some�path�traces�from�start �tape� alphabet � start�states �table��nal�states � states�
� � path traces�from�start �tape� path�alphabet � start�states �table��nal�states � states�

Then it is necessary to de�ne a function next�state�preimage that� given a state and a
symbol� �nds a starting state that would reach the given state in one step over the symbol�
Four lemmata about this preimage are proven�

Similar to the constructive proof it is shown that the deterministic next states are members
of the power set after proving further lemmata about ordering� and various other member and
subsetp lemmata� An extension theorem is proven� in that if there is a trace from a starting
set x and x � y� then there is a trace from y as well�

Instead of using the function some�member as a predicate indicating whether or not a
member of the intersection can be found� a function get�final�state is introduced that
produces the witness as a result� Three lemmata about this are proven before one base case
and three horribly complex lemmata �each about a page long� are proven� Most of the term is
given over to USE hints to force substitutions on the prover� The goal theorem is that if there
exists a trace from the start state in the deterministic automaton� then some path which traces
from a start state exists in the nondeterministic automaton�

The second existential function is an acceptance function that is just like the previous one�
except that it requires all nodes in the path to be lists� This is because there could be a nil

��
� EXTENDING THE AUTOMATA WITH ��TRANSITIONS 	�

node in the nondeterministic path� In essence a nondeterministic path is postulated to exist
which is covered by the deterministic path�

Definition �Skolemized��
accepts� �tape� fsa� � � path �accepts� �tape� path� fsa� � map�listp �path��

A series of seven lemmata are necessary to prove that traces�from�start and traces��

to�final are equivalent if the automaton is a nondeterministic automaton and the �rst element
of the path is a member of the start states�

The theorem can now be proven� again with four USE hints� with the additional hypothesis
that F is not one of the states in the nondeterministic machine�

����	 Discussion

This proof in the version described in the internal note encompasses 	� function de�nitions� �
existential quanti�cation introductions and

 lemmata� so the size of the proofs is comparable�
However� the existential proof makes liberal use of the vast knowledge that the proof writer
has of the way in which the prover works� Many hints are given to the prover in order to get
theorems accepted�

The proof is not to be taken as the last word in an existential proof � as mentioned above�
this is just a rough draft of the proof� as an intensive polishing e�ort would certainly get rid of
many of the hints and perhaps even some of the hypotheses� The forward direction of the proof
is quite similar to the hand proof in �RS���� The other direction� however� is quite di�erent�
as there is no �backwards induction� possible� This is replaced by a di�erent sort of path
existence predicate�

Since the functions for which the proofs were done are equivalent� and the theorems with
the exception of the additional hypothesis in the dfsa!�nfsa direction are essentially the same�
the validity of the theorems has been demonstrated using both the existential quanti�cation
method and the constructive method� Thus� there is more evidence that the existential quan�
ti�cation extension is not just logical �magic�� and we have shown that it can be possible to
use constructive methods for a proof that is mathematically done using existential quanti�ca�
tion� It should be noted that the e�ective computation of construction methods is not an issue
here � these functions have exponential complexity� and are only e�ectively computable for the
smallest of examples� But now that the method has been proven correct� optimizations can
be introduced and the power of the optimized versions demonstrated to be equivalent to the
exponential version�

��� Extending the Automata with �
Transitions

It would seem to be a trivial exercise to extend this automaton de�nition to include tables with
��transitions� In the literature this is often left as an exercise for the reader� But there are a
number of points that come up when implementing such an automaton and proving it correct�

A NFSA with ��transitions is an automaton with components as before� but the table M
now maps S	�% �f�g� to �S � Instead of changing only the state when a symbol from the input
has been read� a state change may occur without reading a symbol if there is a transition from
the current state to another state which is labelled �� A tape is recognized if a path through the
automaton can be found that is labelled with the symbols from the tape� possibly containing
edges labelled with �� Thus there can be more than one � transition occuring between any two
symbol transitions�

		 CHAPTER �� A MECHANICAL PROOF� NFSA � DFSA

In order to compute the set of states reachable from one state on reading one symbol� the
concept of ��closure is needed� The closure is necessary in order to run the nondeterministic
automaton and also to compute an equivalent deterministic automaton�

De
nition � The ��closure of a state is the state itself and all states reachable by a chain of
��transitions from the state� The ��closure of a set of states S is the union of the ��closure for
each member of S�

So a single step in a nondeterministic automaton from a set of states must now consist of
taking the ��closure of that set of states� then taking the step on the symbol� and then taking
another ��closure� Of course� when combining single steps it would not be necessary to take
the �rst ��closure if one is sure that each previous step ends with such a closure � taking the
��closure again will not add any states to the set of states�

All authors construct the deterministic automaton in the same manner� The set of determ�
inistic states is the power set of the set of nondeterministic states� the starting state is the set
containing the nondeterministic starting state� the �nal states are any deterministic state con�
taining a �nal state from the nondeterministic automaton� and the table N�t� �� is the ��closure
of all states reachable from the ��closure of t by ��

This construction has a particular �aw� for the empty tape� if a nondeterministic automaton
with ��transitions has an ��transition from a start state which is not in the �nal states to a
state in the �nal states� then it will not recognize the tape� but the deterministic one will� The
problem is in the construction of the start state� it would be better to take the ��closure of
the nondeterministic start state� This is unfortunate for the proof� as noted by Hopcroft and
Ullman �HU��� p����� but easily taken care of by starting the induction proof with tapes of
length �� This complicates the mechanical proof� however�

Implementing the construction algorithm in the logic is a surprisingly di�cult task � the
termination argument for the ��closure is not trivial� It involves the set di�erence between
the complete set of states and the set of states contained in the closure� A function can be
constructed that takes one � step for every state in a set of states�

Definition�
one�epsilon�step�all �states � table�
! if states � nil then nil

else next�states �table� car �states�� epsilon�
� one�epsilon�step�all �cdr �states�� table� endif

The closure takes the table� a set of states� and the complete set of states as arguments� The
latter could theoretically be constructed by computing the domain of the table and unioning
that with the range union of the table� but that would complicate the function unnecessarily�

A tentative next step is calculated by taking the union of one � step and the set of states���
If the length of this next step is the same as the length of the set of states� or if all states
have been included �meaning it is the same length as the set of all states�� then the function
terminates� otherwise another round of recursion is called for� The termination argument is
then the di�erence between the length of the set of all states and the length of the set of states�
It would be preferable to have set equality here� but that is not easy to achive when modelling
sets as lists� as discussed above�

�
Note that it is important that the parameters to union are in this order� The satellite function � is not a
perfect union� When the list in its �rst parameter has been exhausted� the second parameter is returned sight
unseen� Since the start state must be a proper set in the well�formedness predicate� it can be demonstrated
that the result of this is always a set� if need be� This is a tricky corner in coaxing the prover to accept a
termination argument�

��
� EXTENDING THE AUTOMATA WITH ��TRANSITIONS 	�

Definition�
epsilon�closure �table� states � all�states�
! let next�set be one�epsilon�step�all �states � table� � states

in

if �length �states� ! length �next�set�� � �length �next�set� �� length �all�states��
then states
else epsilon�closure �table� next�set � all�states� endif endlet

The complex termination argument gets in the way of almost every proof attempted� Since
a �backwards induction� cannot be done back over the ��closure� a reached function was
implemented to compute the states reached by a tape from a particular set of starting states
and a number of interaction lemmata were proven�

Definition�
reached �table� states � tape� all�states�
! if tape � nil then states

else reached �table�
next�states�list �states � car �tape�� table� all�states��
cdr �tape��
all�states� endif

Theorem� reached�append
reached �table� states � append �a� b�� all�states�
! reached �table� reached �table� states � a� all�states�� b� all�states�

Theorem� subsetp�reached
�subsetp �starts � nstates� � all�nfsa�transitions �table� alphabet � nstates��
� subsetp �reached �table� starts � tape� nstates�� nstates�

Theorem� plistp�reached
�all�nfsa�transitions �ntab� alphabet � nstates�
� plistp �starts�
� subsetp �starts � nstates��
� plistp �reached �ntab� starts � tape� nstates��

Theorem� plistp�epsilon�closure
plistp �states� � plistp �epsilon�closure �table� states � all�states��

Theorem� next�states�list�nil
next�states�list �nil� symbol � table� states� ! nil

A correspondence theorem was proven correct by an induction involving extending the tape
by an extra symbol� but this proof involved three axioms and was only provable by massive
intervention with PC�NQTHM� One theorem is just a problem with order� our normalization
function for the set equality simulation� The second concerns ��closure in the deterministic
table � since the symbol is not in the alphabet� no table entries can have � in the symbol
component� and thus the closure is the identity function� The third is more subtle � if a state
has been reached� it has just been ��closed� so another ��closure won�t add any states� If these
axioms are true and contradiction�free� then reaches�nfsa�reaches�dfsa can be proven�

	� CHAPTER �� A MECHANICAL PROOF� NFSA � DFSA

Axiom� next�states�list�order�equal
subsetp �a� b�
� �next�states�list �order �a� b�� symbol � table� states�

! order �next�states�list �a� symbol � table� states�� b��

Axiom� next�states�list�epsilon�closure�reached
next�states�list �epsilon�closure �ntab�

order �reached �ntab� starts � tape� nstates��
nstates�� nstates��

symbol �ntab�nstates�
! next�states�list �order �reached �ntab� starts � tape� nstates� � nstates��

symbol � ntab� nstates�

Axiom� epsilon�closure�dfsa�identity
epsilon�closure �dfsa�table �alphabet � dstates � ntab� nstates�� x � dstates� ! x

Theorem �using axioms�� reaches�nfsa�reaches�dfsa
�subsetp �starts � nstates�
� listp �tape�
� all�nfsa�transitions �ntab� alphabet � nstates�
� �symbol � alphabet�
� listp �order �reached �ntab� starts � tape� nstates� � nstates��
� �reached �dfsa�table �alphabet � all�subbags �nstates� � ntab� nstates��

dfsa�starts �starts � nfsa� nstates��
tape�
all�subbags �nstates��

! list �order �reached �ntab� starts � tape� nstates�� nstates����
� �reached �dfsa�table �alphabet � all�subbags �nstates� � ntab� nstates��

dfsa�starts �starts � nfsa� nstates� �
append �tape� list �symbol���
all�subbags �nstates��

! list �order �reached �ntab�
starts �
append �tape� list �symbol���
nstates��

nstates���

This should be enough to prove the theorem correct that the deterministic automaton
simulates the nondeterministic one with ��transitions� but something more is missing� Since
I will not be proving a function correct that constructs a nondeterministic automaton with
��transitions from either regular expressions or from items derived from productions in a
grammar in order to construct a table� the proof is left at this stage� It is available on�line at
the address given in Section ����

Chapter �

Scanning

Parsing algorithms are based on context�free grammars� which are concerned with recognizing
the language induced by a set of productions on a sequence of terminal symbols� Useful
languages have an in�nite number of terminal symbols� each of which consists of a sequence
of characters� The sequences� called token representations� are grouped into a �nite number
of token classes� in which similar representations are said to be instances of the same token
class� For example �Count� and �Length� are both instances of the token class identi�er�
Determining the token representation class for a character sequence is the task often referred
to as scanning�

This chapter discusses the issues involved in a mechanical proof of a scanner� It includes� as
an example of the process� the speci�cation� implementation� and proof with the Boyer�Moore
theorem prover of a scanner for the language PLR

� from the ProCoS language family �DB����

��� Mechanically Proven
Correct Scanning

Token representation classes are regular sets that can be speci�ed by regular expressions alone
and do not need the full power of context�free grammars� A regular expression can be used
to specify such a token representation class� It can then serve as the basis for constructing
a �nite state automaton that is able to recognize when a sequence of characters is a token
representation for the token representation class�

The speci�cation of a scanner can be seen as a set of regular expressions� However� there
are a few minor problems that arise� The �rst is that one often wishes to refer to a number of
characters as one component of a regular expression� for example� letter and digit to represent
the sets f A�� ��� Z�� a������ z� g and f
������ ��g respectively� These character set representations
will be referred to as character classes�

The other problem is more di�cult� Scanning must split a sequence of characters into
subsequences that each belong to one of the token representation classes� But not only can
there be overlap� where a sequence of characters can belong to more than one token represent�
ation class� there can also be more than one way to split a sequence into subsequences� For
example� the character sequence �AB	�� could be construed to be either �name� �AB	��� or
�name� �AB�� �integer� �	���� Usually this is solved by applying the principle of longest
match� This is the attempt at each stage to �nd the longest possible pre�x of the sequence
that is a member of some token representation class� This often entails a sort of lookahead to
see if the next character extends the token within the token representation class de�nition or
not�

If there is more than one regular expression with longest match� then they determine the
same pre�x because they must have the same length� In such a case� selecting the �rst regular

	�

	
 CHAPTER
� SCANNING

expression according to the order in the speci�cation will determine a unique token class� This
combined rule will be referred to as the ��rst longest match�� principle�

A scanner is normally generated from the set of regular expressions by combining them to
one large regular expression with the or operator� This regular expression can be transformed
to a nondeterministic �nite state automaton and that can be made deterministic by using the
Rabin�Scott method as described in chapter �� This deterministic automaton can easily be
coded into a table or nested case statements�

But there are still problems that arise� There are some special situations that cannot
be covered by regular expressions� but which would make the work of the parsing algorithm
much easier if they could be resolved at this stage in the compiling process� These situations
are often easily programmed but are di�cult to specify with context�free or context�sensitive
grammars� Typically� scanner generators such as lex �Les��� or �ex �Pro

�� o�er the user
the possibility of executing portions of code at certain points during the scan� usually after
a token representation class has been determined� so that such �di�cult� problems can be
handled� Canonical examples of this type of problem are the di�erentiation between keywords
and identi�ers� or determining if an identi�er is a type de�nition name or a variable name�
as in the C language� This is often done by constructing and using an external symbol table
during scanning�

The problems discussed above make a mechanical veri�cation of a scanner quite di�cult�
there must be an exact speci�cation for all portions of the task� if an implementation of a
scanner is to be proven correct� The speci�cation cannot have �holes�� or assume that the code
fragments inserted at token representation class recognition points will function correctly�

The speci�cation task can be facilitated by dividing the scanning process into two phases�
The �rst phase� which I call split� constructs a �rst sequence of precursors for tokens� denoted
here as pre�tokens� by splitting o� the substrings of the input character sequence that represent
tokens using the principle of �rst longest match� The longest match is not obtained by using a
lookahead� but by running the �nite state automaton constructed from the regular expressions
against all pre�xes of the character sequence�� selecting the longest accepting pre�x as the next
subsequence to be split o�� and choosing the �rst regular expression name from the acceptance
list�

In a second phase� a series of transformation functions are applied to the sequence of pre�
tokens� These functions are called token transformation functions�� Each transformation will
transform one kind of pre�token into another pre�token or into a token as expected by the
parser� Examples of such functions are the transformation of the value of an integer token
from the string representation into a number� or the removal of one type of pre�token� for
example the comment pre�token� from the sequence� Some transformations will need to be
performed in sequence� some can be performed in parallel� Each transformation function has
a clear speci�cation� facilitating the mechanical veri�cation of the implementation�

For now it will be assumed that the �nite state automaton determining the token repres�
entation classes is given as the speci�cation� As is discussed in Section 	����� this is a process
that could be proven correct� although it is not done in the scope of this thesis�

�Some authors use the term
longest match� �rst �t� for this notion�
�This is because one lookahead might not extend the accepted pre�x� but a sequence of lookahead characters

might again reach an accepting state�
�Some authors �BE��� WM��� use the terms sieve or �lter for this sort of function� But sieves and �lters

only let some parts of their input through� keeping back the
rubble�� There will be some transforming of
tokens� however� and thus such functions should be called token transformation functions�

��� SPLITTING OFF PRE�TOKENS 	�

��� Splitting O
 Pre
Tokens

In this section a scanner which splits an input character sequence into pre�tokens will be spe�
ci�ed and proven correct� The relevant speci�cations for PLR

� are given� and the NQTHM
events that are used in the proof are discussed� The concepts of character and token repres�
entation class will be de�ned� the representation of pre�tokens given� the implementation of the
split function explained� and the correctness theorems and their proof discussed�

����� Character Class De�nition

Since characters are often grouped together in a unit in the regular expressions specifying the
token representation classes or as the label of a transition in a FSA� the �rst task is to de�ne
the notion of a character class�

De
nition � A character class is a named� �nite set of representations for characters�

A character class is speci�ed by enumeration� Each character class is considered to be
atomic � there is no access to the component characters or to the order in which the characters
are listed� Subranges are often used as the enumeration speci�cation with respect to character
ordering� for example the ASCII code character ordering� Subranges will be used in the human
readable speci�cation of the character classes for PLR

� � but in the implementation in the logic
all the characters in the subrange will have to be listed with their exact representations� the
byte values used in the ASCII code�

The character classes for a language must be disjoint� meaning that any character may
belong to at most one character class� Any character not contained in a character class� but
encountered in a scan� is considered to be in error and aborts the scan�

The character classes for PLR
� are de�ned as follows�

le ! f�a�� � � � � �z�� �A�� � � � � �Z�g
di ! f�
�� � � � � ���g
pe ! f���g
bl ! f� �g
co ! f���g
eq ! f�!�g
mi ! f���g
lt ! f���g
gt ! f���g
lp ! f���g
rp ! f���g
lb ! f���g
rb ! f���g
op ! f�"�� �$�� ���� �n�� ���� � #�g
nl ! f �� g � carriage return
bf ! f � g � begin of �le marker
ef ! f a g � end of �le marker

All one character operators that are not needed in token representation class de�nitions
have been grouped together in the character class op� They will be mapped to their respective
tokens in a token transformation function� This cuts down on the size of regular expressions
for constructs such as comment� as the regular expression operator for NOT is not used� The
character class de�nition for PLR

� as needed for NQTHM is given in Appendix A���

�
 CHAPTER
� SCANNING

����� Pre
Token Class De�nition

As discussed above� a sequence of token representation class members is to be constructed from
the character sequence so that the parser need only handle a �nite number of such classes� Only
pre�tokens will be considered at this point�

De
nition � A pre�token class� or token representation class� is a possibly in�nite set of
�nite character sequences that is speci�ed by a regular expression over character classes�

There must be a �nite number of pre�token classes in a language speci�cation� The classes
usually involve groupings for names and numbers� for special characters that are used to syn�
tactically denote aspects of the language� and for combinations of non�alphanumeric characters
that can be considered to be keywords� but which cannot be pre�xes of any identi�er and can
thus be isolated early in the scanning process� for example ��!��

Only the regular expression operations concatenation� disjunction �"�� and iteration�$�
will be used in the speci�cations� The post�x " and negation operations are not absolutely
necessary for such speci�cations and are cumbersome to implement� and thus are not used�

The pre�token classes for PLR
� are de�ned as follows�

Lname ! le �le " di " pe�$
Linteger ! di di$
Lcolon ! co
Lcoloneq ! co eq
Llt ! lt
Lle ! lt eq
Lne ! lt gt
Lgt ! gt
Lge ! gt eq
Lindent ! nl �bl bl�$
Lws ! bl bl$ � whitespace
Leq ! eq
Lop ! op " mi
Lef ! ed
Lcomment ! mi mi �le " di " pe " bl " co " eq " lt " gt " mi " op�$

Pre�tokens will be represented as a pair consisting of a name � a symbol denoting the pre�
token class � and a string value� which is the portion of the input matching the de�ning regular
expression� Some compilers encode further information into their token representations� for
example the line and column position at which the token began in the original input �le�
This scanner will not be concerned with such further information� as it is primarily used for
preparing error messages and the ProCoS compilers aim to compile programs that have been
automatically and correctly generated from speci�cations and thus are free of syntactical errors�

����� Constructing a FSA

A deterministic �nite state automaton is constructed by �rst making the non�deterministic
�nite state automaton that recognizes any one of the regular expressions� First the NFSAs
for the individual pre�token class de�nitions are constructed� Each automaton NFSAi consists
of a set of character class names as the alphabet %i� a set of states Si� a starting state S�i� a
transition table Mi and a set of accepting states Fi� In order to make the next step easier� the
states Si will be constructed so that they are disjunct� The states will be pairs consisting of

��� SPLITTING OFF PRE�TOKENS ��

a number �the state for the individual FSA constructed from one regular expression� and the
name of the pre�token class� In this manner a set of disjoint states is easily obtained when the
union of all states is taken� The entries in the transition table are triples �from�state� label�
to�state��

A Nondeterministic FSA

These are the �fteen �nite state automata for the individual pre�token class regular�expression
speci�cations for PLR

� that will be joined to make one NFSA that can recognize any of the
individual components�

NFSAname � ��name � fle�di�peg�
Sname � f���name�����name�g�
S�

name � ���name��
Mname � f����name��le����name�������name��le����name���

����name��di����name�������name��pe����name��g�
Fname � f���name�g�

NFSAinteger � ��integer � fdig�
Sinteger � f�	�integer���
�integer�g�
S�

integer � �	�integer��
Minteger � f��	�integer��di��
�integer�����
�integer��di��
�integer��g�
Finteger � f�
�integer�g�

NFSAcolon � ��colon � fcog�
Scolon � f���colon�����colon�g�
S�

colon � ���colon��
Mcolon � f����colon��co����colon��g�
Fcolon � f���colon�g�

NFSAcoloneq � ��coloneq � fco�eqg�
Scoloneq � f�
�coloneq�����coloneq�����coloneq�g�
S�

coloneq � �
�coloneq��
Mcoloneq � f��
�coloneq��co����coloneq�������coloneq��eq����coloneq��g�
Fcoloneq � f���coloneq�g�

NFSAlt � ��lt � fltg�
Slt � f����lt������lt�g�
S�

lt � ����lt��
Mlt � f�����lt��le�����lt��g�
Flt � f����lt�g�

NFSAle � ��le � flt�eqg�
Sle � f����le����	�le����
�le�g�
S�

le � ����le��
Mle � f�����le��lt���	�le������	�le��eq���
�le��g�
Fle � f��
�le�g�

NFSAne � ��ne � flt�gtg�
Sne � f����ne������ne����
�ne�g�
S�

ne � ����ne��
Mne � f�����ne��lt�����ne��������ne��gt���
�ne��g�
Fne � f��
�ne�g�

NFSAgt � ��gt � fgtg�
Sgt � f����gt������gt�g�
S�

gt � ����gt��
Mgt � f�����gt��gt�����gt��g�
Fgt � f����gt�g�

NFSAge � ��ge � fgt�eqg�
Sge � f����ge������ge������ge�g�

�� CHAPTER
� SCANNING

S�

ge � ����ge��
Mge � f�����ge��gt�����ge��������ge��eq�����ge��g�
Fge � f����ge�g�

NFSAindent � ��indent � fnl�bl�bfg�
Sindent � f��	�indent����
�indent������indent�g�
S�

indent � ��	�indent��
Mindent � f���	�indent��nl���
�indent������	�indent��bf���
�indent���

���
�indent��bl�����indent��������indent��bl���
�indent��g�
Findent � f��
�indent�g�

NFSAws � ��ws � fblg�
Sws � f����ws����
�ws�g�
S�

ws � ����ws��
Mws � f�����ws��bl���
�ws������
�ws��bl���
�ws��g�
Fws � f��
�ws�g�

NFSAeq � ��eq � feqg�
Seq � f����eq������eq�g�
S�

eq � ����eq��
Meq � f�����eq��eq�����eq��g�
Feq � f����eq�g�

NFSAop � ��op � fop�mig�
Sop � f�	��eq���	��eq�g�
S�

op � �	��eq��
Mop � f��	��eq��op��	��eq�����	��eq��mi��	��eq��g�
Fop � f�	��eq�g�

NFSAcomment � ��comment � fmi�le�di�pe�bl�op�co�eq�gt�ltg�
Scomment � f�	��comment���		�comment���	
�comment�g�
S�

comment � �	��comment��
Mcomment � f��	��comment��mi��		�comment��� ��		�comment��mi��	
�comment���

��	
�comment��mi��	
�comment�����	
�comment��le��	
�comment���
��	
�comment��di��	
�comment�����	
�comment��pe��	
�comment���
��	
�comment��bl��	
�comment�����	
�comment��op��	
�comment���
��	
�comment��co��	
�comment�����	
�comment��eq��	
�comment���
��	
�comment��gt��	
�comment�����	
�comment��lt��	
�comment�� g�

Fcomment � f�	
�comment�g�

NFSAef � ��ef � fefg�
Sef � f�	��ef���	��ef�g�
S�

ef � �	��ef��
Mef � f��	��ef��ef��	��ef��g�
Fef � f�	��ef�g�

All of these automata are deterministic� but when they are composed a non�deterministic
automaton is obtained� since there is more than one state �for example ��� �� or ��� that is
reachable from the new start state on a transition labelled lt� The automaton is constructed
by taking the union of the alphabets� the union of the states and a new state
� the state

as new start state� the union of all transition tables and a transition from the new start state
to all of the start states of the regular expression automata� and the union of the accepting
states� Since the states are all pairs containing the name of the de�ning regular expression� it
can be determined from any accepting state which regular expression was responsible for the
recognition by examining the name component of that state� So the combined automaton for
PLR

� is

NFSAPLR
�

! �%
PLR

�

!
S

%i�

S
PLR

�

!
S

Si � f�
���g�

S�
PLR

�

! f�
���g�

��� SPLITTING OFF PRE�TOKENS ��

M
PLR

�

!
S

Mi � f��
������s j s �
S

S�ig

F
PLR

�

!
S

Fi��

for i � fname� integer� colon� coloneq� lt� le� ne� gt� ge� indent� ws� eq� op� commentg

The Deterministic FSA for PLR�

The method of constructing the deterministic table as outlined in �Gou

� p� ���� based on
the Rabin�Scott method �RS���� will be used� In order to more clearly see what is happening�
only the state numbers and not the complete state number and expression name pair are used�
From the ��closure of the start state� f
� �� �� �� �� �
� ��� ��� �
� �
� ��� ��� �
� �
� ��� ��g�
the set of states reachable by a transition on a member of the alphabet is determined� From
each such collection it is determined if any more sets of states are reachable by ��closure� This
continues until no further new sets of states are constructed� Each new state is a member of
the power set of the original set of states� and is accepting if any member is a member of the
�nal state� The state designators are renamed to make them easier to read� Only accepting
states have meaningful name components� the rest have a dot ��� for �don�t care�� The results
for PLR

� are given in �gure 	���

le di pe bl co eq mi lt gt op nl bf nf Acc� new

�� �� 	� ��
�
��� ��� ���
��� ��� �	�
��� ��� 	��
	�� 	�

�
 �
 �� � �� 	��
		

���
�	�
��

���
��

	� �
 �
 	� N A

� � � � Y B

 Y C
�
 �
 Y D
�� � � Y E
�� Y F
	�� 		 	
 Y G
��� �	� �� �
 �
 Y H
��� �� �� Y I
	� Y J
�
 �� Y K
	� Y L
� Y M
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Y N
�
 Y O
�
 Y P
�� Y Q
�� �
 N R

Figure 	��� Constructing the DFSA for PLR
�

So for PLR
� the deterministic FSA is

%PLR
�

! fle� di� pe� bl� co� eq� mi� lt� gt� op� nl� bf� nfg�

SPLR
�

! f�A���� �B�name�� �C�digit�� �D�ws�� �E�colon�� �F�eq�� �G�op�� �H�lt�� �I�gt��

�J�op�� �K�indent�� �L�ef�� �M�coloneq�� �N�comment��
�O�le�� �P�ne�� �Q�ge�� �R���g�

S�
PLR

�

! f�A���g�

�	 CHAPTER
� SCANNING

MPLR
�

can be read from the table� and

FPLR
�

! f�B�name�� �C�digit�� �D�ws�� �E�colon�� �F�eq�� �G�op�� �H�lt�� �I�gt��

�J�op�� �K�indent�� �L�ef�� �M�coloneq�� �N�comment��
�O�le�� �P�ne�� �Q�ge�g�

The automaton de�nition is given in Appendix A��� Note that this deterministic automaton
is not necessary � the acceptance function is exactly the same for non�deterministic and de�
terministic automata� It is faster to compute the pre�x with a deterministic automaton� if in
such a context of exponential complexity the concept of faster has any meaning�

����� Speci�cation of split

As discussed at the beginning of this chapter� a scanner has the task of splitting a sequence
of characters into a sequence of pre�tokens according to a pre�token class speci�cation and
the principle of longest match� The function to split o� the longest pre�x will be called lop

�longest pre�x� and the function that repeatedly applies lop to a sequence of characters will
be called split�

One important postcondition on lop is that it returns the longest pre�x possible� That is�
there is no way to extend the pre�x and still encounter an accepting state� Another postcon�
dition� on the result of repeatedly applying the function split� is that retrieving the pre�xes
split o� the tape from the tokens and concatenating them together will result in the original
tape� This will be the main theorem in the proof� split�splits�
The following properties about an implementation of split and lop need to be proven�

Longest pre
x is a pre
x The result of applying lop to a tape is a character sequence that
is a pre�x of the tape�

Theorem� pre�xp�lop
pre�xp �lop �nfsa� cc� tape�� tape�

Longest pre
x accepting The result of applying lop is a pre�x that is accepted by the
automaton fsa using the character classes de�ned in cc� The alphabet of the automaton
is the range of the character class mapping given in cc�

Theorem� accepts�lop
�listp �tape� � �lop �nfsa� cc� tape� �! nil��
� accept �nfsa� cc� lop �nfsa� cc� tape��

Longest pre
x is the longest There are no pre�xes of the tape which are longer than lop

that are also accepting pre�xes�

Theorem� accepting�pre�x�is�longest
�listp �tape� � �lop �nfsa� cc� tape� �! nil��
� longestp �lop �nfsa� cc� tape�� all�accepting �all�pre�xes �tape�� nfsa� cc��

Lossless order preservation The values of the tokens in the token sequence constructed
by split can be concatenated in order to be exactly the same as the input character
sequence�

Theorem� split�splits
plistp �tape� � �collect�values �split �nfsa� cc� tape�� ! tape�

��� SPLITTING OFF PRE�TOKENS ��

����	 Implementation of split

A number of libraries were used in the development of the proof� In order to keep the proof as
small as possible� they have been factored out and only the necessary de�nitions and lemmata
are included here� Only a description of the necessary events is included here because of space
concerns� the complete events can be obtained from the URL given on page ��

List events

These events are from a lists library�

� length determines the length of a list�

� equal�length�� states that there are no lists of length zero��

� length�nlistp states the same fact a bit di�erently� anything that has the nlistp

property has length zero�

� length�cons states that the length of a list increases by � if cons adds an element�

� plist is a constructor for a proper list� That is� something that is either a list with nil

as the last cdr or is exactly nil�

� plistp is a recognizer for proper lists�

� plistp�nlistp states that the only non�list which is a plist is nil�

� equal�plist states that applying plist to a proper list results in the same list�

� append�left�id is the left identity for the function append�

� append�nil states that appending nil to anything makes a proper list out of it�

Set events

These two de�nitions are from a library on set theory� Since there is no set data type� sets
must be implemented as lists�

� subsetp determines if all elements of the �rst parameter are elements of the second list�
It is perhaps misnamed and should be called subbagp� since no check is made if either
of the parameters contains duplicate elements�

� setp checks that there are no duplicate elements in a list�

Association list events

These two de�nitions are from the alist �association list� library� They are used for the rep�
resentation of �nal states and recognized pre�token classes�

� domain selects the domain elements from an association list�

� alistp is a recognizer for association lists�

�This is because in the Boyer�Moore logic nil and other literal atoms are not lists� So if anything has length
of zero� then it cannot be a list�

�� CHAPTER
� SCANNING

Automata events

These events are taken from the �nite state automaton equivalence proof and have been slightly
modi�ed to accommodate the �state� name� pairs used to remember the accepting pre�token
class name�

� fsap is a recognizer for �nite state automata� The start state must be a member of the
states and the domain of the �nals must be a subset of the states� The states and the
�nals must be proper sets�

� mk�transition constructs a transition from a state on an input to a set of next states�

� state selects the state component of a transition�

� input selects the input component of a transition�

� nexts selects the next states component of a transition�

� transitionp is a recognizer for a well�formed transition with respect to the set of states
and the alphabet�

� wf�table is a recognizer for a transition table that is well formed with respect to the set
of states and the alphabet�

� ndfsap is a recognizer for a non�deterministic �nite state automaton� which is a �nite
state automaton with a well�formed table�

� next�state �nds the set of next states from a state on an input symbol with respect to
a table�

� next�states�list �nds the set of next states for a list of states�

Accepting Regular Expressions

Since the structure of the �nal states set was changed from a set of states to a set of �state�
name��pairs� the acceptance function has to be adapted� In addition� the automaton transitions
are not directly on a character but on a character class� so that each character in the tape must
be transformed to the appropriate character class before it is looked up in the automaton table
with next�states�list�

� cc�name looks up the character class name for a character�

� all�regular�expressions�for�state selects the regular expression names for one
state in the set of �nals�

� all�regular�expressions cdrs down the list of states collecting the regular expression
names� if they are members of the set of �nals�

� accept	 runs the tape against the table by starting with the start states� transforming
each character in turn into a character class� and determining the next set of reachable
states� When the input has been exhausted� each state in the reached states is examined�
If it is in the domain of the �nal states� then the corresponding regular expression is
collected into a list� If there are more than one� the �rst in the list will be returned by
accept	�

��� SPLITTING OFF PRE�TOKENS ��

� accepting�regular�expressions is a wrapper function that selects out the parts of the
FSA for calling accept	�

� accept is the outer acceptance function that returns a list of regular expressions causing
acceptance�

Longest Accepting Pre
x

The following function de�nitions are necessary for the implementation of the function lop�
which determines the longest accepting pre�x of a tape�

� consl conses x onto every element in l and is the basis for constructing all the pre�xes
of a tape�

� all�prefixes returns the list of all pre�xes of a tape without the nil pre�x� The list
happens to be sorted with the longest pre�x �rst� but this fact is not used in the proof�
This would� however� present an opportunity for making the scanning a bit more e�cient�
since one would only need to check pre�xes until an accepting one is found� which would
be the longest one�

� all�accepting cdrs down a list of tapes and returns a list of those tapes which are
accepted by the NFSA�

� longest	 remembers the �rst longest member seen up until this point� It checks the top
of the rest to see if it is longer and if so� uses this for the recursive call� It cdrs down the
list and returns the longest�to�date when the list has been exhausted� If two members
are of equal length� then the �rst one is kept on as the longest member to date� Thus�
the result of this function is the �rst member that has maximal length��

� longest calls longest	 with the list and the �rst member of the list as the longest�to�
date�

� lop looks through all the pre�xes of a tape and determines the ones that are accepting�
From this set the longest is selected and returned�

Definition�
lop �nfsa� cc� tape�
! longest �all�accepting �all�pre�xes �tape�� nfsa� cc���

Splitting a Character Sequence

Once the longest accepting pre�x has been found something useful must be done with it�
i�e� �nd the name of the token class that it belongs to and construct a pre�token with that
information� The same representation will be used for pre�tokens and tokens� namely a shell
called mk�token� The literal atom nil represents the empty token� and a function tokenp

is de�ned to be a recognizer function for tokens� There are two components� a name and
a value component� that have default values of zero� The function longest�prefix�token

constructs the pre�token from the pre�x by determining which regular expression accepted it�

�The function probably should have been called first�maximal� the name longest� is an often found
naming convention in NQTHM proofs� This inner function is the real recursive function� but it often needs to
be set up in some manner� The wrapper function is given the expected name and the inner function is given a
su x of ��

�
 CHAPTER
� SCANNING

Since accepting�regular�expressions always returns a list � although there should only be
one member in the list � it is necessary to use car to select the �rst element from this list�

Event� Start with the initial nqthm theory�

Event� Add the shell mk�token� with recognizer function symbol tokenp and � accessors�
token�name� with type restriction �none�of� and default value zero� token�value� with type
restriction �none�of� and default value zero�

Definition�
longest�pre�x�token �nfsa� cc� pre�x�
! mk�token �car �accepting�regular�expressions �nfsa� cc� pre�x��� pre�x�

In order to split the tape� a function for removing successful pre�xes from the tape is
needed� remove�common�prefix� In order for the function to be used in the recursive call of
split� it must be shown that applying remove�common�prefix results in something that is
smaller with respect to some order� here lessp� Such termination arguments are common for
complex functions�

Definition�
remove�common�pre�x �a� b�
! if a � nil then b

elseif b � nil then nil
elseif car �a� ! car �b� then remove�common�pre�x �cdr �a�� cdr �b��
else nil endif

Theorem� remove�common�pre�x�lessp
�pre�xp �a� b� � listp �a� � listp �b��
� ��length �remove�common�pre�x �a� b�� � length �b�� ! t�

If lop ever delivers a longest pre�x of length
� the tape has a lexicographic error in it� This
will be denoted by constructing a �nal pre�token with token class name lexicographic�error
and the value containing the rest of the unscanned tape� This is necessary so that the entire
tape can be retrieved from the split result� even if it is in error�

Definition�
split �nfsa� cc� tape�
! if tape � nil then tape

else let pre�x be lop �nfsa� cc� tape�
in

if length �pre�x� ! �

then cons �mk�token ��lexicographic�error� tape�� nil�
else cons �longest�pre�x�token �nfsa� cc� pre�x��

split �nfsa�
cc�
remove�common�pre�x �pre�x � tape��� endif endlet endif

����� Proof of correctness for split

The proof of correctness for this implementation of split will now be discussed in detail�

��� SPLITTING OFF PRE�TOKENS ��

Result is a Pre
x

The �rst goal is to prove that lop provides a pre�x of tape� For this the concept of a being a
pre�x of b must be de�ned� A function prefixp will cdr down a and b in step� checking that
the cars of each list are equal� If a �runs out� T will be returned� which means that nil and
any literal atoms are pre�xes of anything� If b should run out before a does� then a is not a
pre�x and F is returned�

Definition�
pre�xp �a� b�
! if a � nil then t

elseif listp �b�
then if car �a� ! car �b� then pre�xp �cdr �a�� cdr �b��

else f endif

else f endif

prefixp is re�exive and transitive� although the re�exivity is not necessary for further
proofs� and it can also be shown that if a is the pre�x of b and b of a and both are proper lists�
then a ! b� Such lemmata are extremely bad rewrite rules� however� and are thus commented
out in the script�

Theorem� pre�xp�re�exive
pre�xp �a� a�

Theorem� pre�xp�transitive
�pre�xp �a� b� � pre�xp �b� c�� � pre�xp �a� c�

The functions all�prefixes� all�accepting� longest	 and longest must also be shown
as not changing the prefixp�ness of their parameters� A function all�prefixp is constructed�
which states that all members of a list have the property prefixp to help us state and prove
these facts�

Definition�
all�pre�xp �l � full�
! if l � nil then t

else pre�xp �car �l�� full� � all�pre�xp �cdr �l�� full� endif

Theorem� all�pre�xp�all�pre�xes
all�pre�xp �all�pre�xes �tape�� tape�

Theorem� all�pre�xp�all�accepting
all�pre�xp �x � y� � all�pre�xp �all�accepting �x � nfsa� cc�� y�

Theorem� pre�xp�longest�
�all�pre�xp �rest � tape� � pre�xp �longest�to�date� tape��
� pre�xp �longest� �rest � longest�to�date�� tape�

Theorem� pre�xp�longest
all�pre�xp �l � tape� � pre�xp �longest �l�� tape�

�
 CHAPTER
� SCANNING

To prove that lop returns a pre�x of tape� it must �rst be proven that the inner part of
the opened up version of lop contains all pre�xes� and then the prover must be guided to now
use the theorem prefixp�longest on exactly this pattern� Then prefixp�lop can be proven
with simpli�cation� Without the �use� hint the prover starts o� down a wrong induction path�
then chooses a wrong generalization� and proceeds further down an in�nite subgoal generation
chain�

Theorem� all�pre�xp�all�accepting�all�pre�xes
all�pre�xp �all�accepting �all�pre�xes �tape� � nfsa� cc�� tape�

Theorem� pre�xp�lop
pre�xp �lop �nfsa� cc� tape�� tape�

Result is Accepting

The same tactic has to be applied to show that the result is an accepting pre�x� The notion of
all tapes in a list being accepting ones must be de�ned� and it must be shown that this is not
a�ected by other functions such as selecting the longest one�

Definition�
accept�all �l � nfsa� cc�
! if l � nil then t

else accept �nfsa� cc� car �l�� � accept�all �cdr �l�� nfsa� cc� endif

Theorem� member�accept�all�accepts
�accept�all �l � nfsa� cc� � �p � l�� � accept �nfsa� cc� p�

Theorem� accept�all�all�accepting
accept�all �all�accepting �x � nfsa� cc�� nfsa� cc�

The result of applying the function longest to a list is member of the list�

Theorem� member�longest�
�longest� �x � z � �! z � � �longest� �x � z � � x�

Theorem� member�longest
listp �l� � �longest �l� � l�

Now it is not true that all results of lop are accepting pre�xes because the tape can be in
error with respect to the FSA� So the theorem must state that if the longest pre�x is not nil�
then it accepts� An auxiliary lemma is needed for this� called helper�� Note that the function
longest returns the �rst longest pre�x as discussed above�

Theorem� helper
�accept�all �l � nfsa� cc� � listp �l�� � accept �nfsa� cc� longest �l��

Theorem� accepts�lop
�listp �tape� � �lop �nfsa� cc� tape� �! nil��
� accept �nfsa� cc� lop �nfsa� cc� tape��

�It takes a long time to prove helper� which means that trying to prove it on a slow machine will tend to
make one stop it and look for other auxiliary lemmata� However on a Pentium��� with LINUX� the prover is
so fast that one cannot follow the unfolding proof� and this theorem goes through in a !ash�

��� SPLITTING OFF PRE�TOKENS ��

Result is Longest

In order to check that the implementation of longest is correct� we must specify what the
concept means� It is that there does not exist any element in the list with length greater than
the length of the result of the longest function� In order to skirt this negative existential
quanti�cation� the function none�larger can be constructed as a witness to the non�existence
of a longer element in l than x� The function longestp states that x is the longest ele�
ment of l if x is a member of l and there is no longer element� The proof of the theorem
accepting�prefix�is�longest is interesting in that it successfully uses generalization three
times� an unusual circumstance�

Definition�
none�larger �x � l�
! if l � nil then t

elseif length �x� � length �car �l�� then f
else none�larger �x � cdr �l�� endif

Definition� longestp �x � l� ! ��x � l� � none�larger �x � l��

Theorem� not�lessp�length�longest��other
length �longest� �v � z �� �� length �z �

Theorem� none�larger�longest�
none�larger �longest� �v � z �� v�

Theorem� accepting�pre�x�is�longest
�listp �tape� � �lop �nfsa� cc� tape� �! nil��
� longestp �lop �nfsa� cc� tape�� all�accepting �all�pre�xes �tape�� nfsa� cc��

split splits

The main theorem about the function split is that it splits the entire tape� Nothing disappears
or is inserted into the tape� A function must be de�ned to collect up the value portions of
a list of tokens� appending them in the order encountered� A number of lemmata about the
interactions of collect�values� remove�common�prefix� and append must be proven�

Definition�
collect�values �toklist�
! if toklist � nil then toklist

elseif � tokenp �car �toklist�� then �not�a�token�list

else append �token�value �car �toklist���
collect�values �cdr �toklist��� endif

Theorem� plistp�remove�common�pre�x
plistp �tape� � plistp �remove�common�pre�x �a� tape��

Theorem� collect�values�cons
tokenp �a�
� �collect�values �cons �a� b�� ! append �token�value �a�� collect�values �b���

Theorem� append�remove�common�pre�x
pre�xp �a� b� � �append �a� remove�common�pre�x �a� b�� ! b�

�� CHAPTER
� SCANNING

The induction structure is rather nasty and was not discovered by the prover on its own�
A function must be de�ned that has the needed structure and the prover forced to use an
induction scheme based on this structure� The use of generalization must be turned o�� which
is attempted before induction during a proof attempt� and which will destroy the validity of
the theorem statement� During the proof attempt it was discovered that it is not enough for
the tape to be a list� it must be a proper list so that the retrieval constructs a tape that is
equal �and not only equivalent��

Definition�
split�splits�hint �nfsa� cc� tape�
! if �tape � nil� � �lop �nfsa� cc� tape� � nil� then t

else cons �lop �nfsa� cc� tape��
split�splits�hint �nfsa�

cc�
remove�common�pre�x �lop �nfsa� cc� tape�� tape��� endif

Theorem� split�splits
plistp �tape� � �collect�values �split �nfsa� cc� tape�� ! tape�

����� An Incorrect Implementation

Much can be learned by re�ecting on errors� This proof� which seems smooth and almost trivial
when presented� was not discovered quickly� The �rst attempt mixed in all the problems in
scanning that are not expressible with regular expressions� This resulted in such chaos that
a separation of concerns was deemed necessary� That was quite useful� as I then only had to
concentrate on the splitting of the tape into pre�token representation strings�

Even this was not a trivial task� Much energy was concentrated on determining a good
speci�cation for scanning and� since regular expressions are so dominant� it was attempted to
show the exact relationship between a regular expression and the resulting pre�token represent�
ation� This seemed to be easier to do with a scanner interpreter� which would �interpret� each
regular expression against the tape� �nding the longest pre�x to match each regular expression�
and then �nding the longest pre�x in this collection�

The notion of �matching�� when a regular expression matches up with a sequence of char�
acters� was de�ned� It seemed so trivial� and trivial proofs such as the prefixp ones were
easy to do� But the main theorem� split�splits would not go through� no matter how much
e�ort was expended�

After a long time a chance test done for a demonstration for my students discovered a
major error in the scanner interpreter� Since I make my students comment their code� the
example constructed for a demonstration of the implemented� but not yet proven� scanner was
given a comment � and I discovered that the star operator following a concatenation was not
implemented correctly�

With this �xed up split�splits was able to be proven correct� But it was still wrong�
and the problem was with the function matches� It had only been proven that a matching
pre�x was split o�� but the implementation of matching was not correct � there exist pre�xes
that are actually matched by a regular expression that were not recognized by the matcher�
The scanner did not return pre�tokens which were not pre�xes or did not match� but they were
not always the longest ones which could have been found� This is such a subtle area that it
needs to be discussed in much more detail� It turned out that it had been assumed that longest
match distributes through concatenation� That is� for the function longest�match� de�ned as

longest�match �r
 regular�expression� s
 string� lm
 string

��� SPLITTING OFF PRE�TOKENS ��

post pre�xp �lm� s� �
matches �r� lm� �
� � � t � pre�xp�t�s� � matches �r�t� � length �t� � length �lm��

I had assumed that

�LM�� longest
match�r� � r�� s� ! longest
match�r�� snlongest
match�r�� s��

But this does not even hold for a match� much less for the longest match� because it does not
distribute when one of the participating partial regular expressions contains the �or� operator
"� This can be seen in the following example� For the regular expression R and the string S

R ! �dog " doggy� � �bag " gybagel�
S ! �doggybagels�

the longest match would be

longest�match �R� S� ! �doggybag�

by �LM��� In fact� there is a longer match for R on S� �doggybagel��

That is� in order to �nd the longest match for a concatenated regular expression� it is not
su�cient to take the longest for each part and concatenate them� All pre�xes of S have to be
generated and checked for a match with the regular expression R� and then the longest of the
result is to be chosen�

This problem has been noted in the work of Kolyang and Wol� in a discussion of pro�
gram synthesis for the scanning problem found in �KW���� As Burkhart Wol� explained in
a private correspondence we conducted per email on the �doggybagel� problem� they too had
to synthesize similar predicates� They synthesize prematch which computes matched pairs of
pre�xes and matching regular expressions without worrying about the longest one� This is
only possible by computing all pre�xes and then trying to match all regular expressions to
each pre�x�

They use a technique called ��rst �lter fusion� to compute these pairs in one sweep� and
then �lter out the longest matching pre�x� In a later stage of the development� all the parts of
the computation directly related to the regular expressions are factored out into one function�
which turns out to be the state�transition function which can be stored into an array� This step
assures that once the array has been precomputed and a labelling for all regular expressions
that may occur during the set�decomposition takes place� the actual matching can be performed
rather e�ciently�

With this insight an attempt was made to implement a correct matching function as a
regular�expression interpreter in the Boyer�Moore logic� This turned out to be a massively
mutually recursive set of function de�nitions that needed to be combined into a wrapper
function with a tag for determining which function is currently active� the union of all necessary
parameters� and a clock for termination� It is extremely di�cult to understand this de�nition�
much less prove properties about it�

Since theorems have been proven for the equivalence of nondeterministic and deterministic
automata �see Chapter ��� the function de�nitions are available for running an automaton
to check acceptance of a string� The speci�cation for the scanner was rede�ned to be not the
regular expressions themselves� but an automaton which has been constructed from the regular
expressions� The automaton can be constructed from the set of regular expressions by means
of a simple algorithm as was demonstrated above� Then all pre�xes are generated� exactly as
in the program synthesis example� and each is checked for acceptance by one of the automata�

�	 CHAPTER
� SCANNING

This excursion demonstrates the need to be absolutely certain that the predicates used for
the speci�cation of the behavior of a function have been rigorously checked to be sure that they
indeed state what is intended� If care is not taken at this point one ends up with a mechanically
proven�correct implementation that is incorrect in the sense that the implementation is not what
was wanted�

����� E�cient Scanning�

The method proven correct above is extremely ine�cient� For each pre�x to be split o��
all possible pre�xes must be generated� examined for acceptance� and all accepting pre�
�xes checked in order to determine the longest one� Thus this method is of complexity
O�N�$O�N$O�acceptance��$O�N�� which is prohibitively slow for all but the smallest of pro�
grams�

A quick optimization that could easily be proven equivalent to this method would be to
prove and then make use of the fact that the pre�xes are generated in reverse length order�
so that the �rst one that accepts is in fact the longest one� But this does not reduce the
complexity�

An more e�cient scanning method could make use of a DFSA that either only contains
proper transitions or has a transition to a special error state for all non�proper states and input
characters� In either case the scanning starts at the �rst character in the sequence and� after
a token representation has been recognized� it continues on down the sequence� looking for a
further recognition� If the sequence terminates or if no proper transition exists or a transition
to an error state has taken place� then the last token representation recognized is returned as
the pre�x to be split o��

This could be implemented in NQTHM as follows� If the input rest has been exhausted�
check if curr happens to be acceptable� If not� return last because there might have been a
previous acceptance� Leave the determination of errors to the function split� which will be call�
ing this one� If the input has not been exhausted� extend the pre�x by one character �which is
of course also a pre�x� and recurse� The complexity decreases to O�N$O�acceptance��$O�M��
with M the number of tokens in the sequence of N characters� which is better but still not
very fast� �Real� scanners tend to use heuristics in order to determine when to abandon the
continuing scan� for example� when a token representation is known not to be a pre�x of any
other one�

Definition�
lop�opt �fsa� cc� rest � curr � last�
! if rest � nil

then if accept �fsa� cc� curr� then curr
else last endif

else let extend be append �curr � list �car �rest���
in

if accept �fsa� cc� extend�
then lop�opt �fsa� cc� cdr �rest�� extend � extend�
else lop�opt �fsa� cc� cdr �rest�� extend � last� endif endlet endif

A mechanical proof of the correctness of this method would not be nearly as easy to conduct
as the proof of the ine�cient method was� because the activities of pre�x production and
pre�x recognition are not cleanly separated but interleaved� If one could show the functional
equivalence of lop and lop�opt however� then lop�opt could easily be substituted and the
proofs given here could be reused�

��� TRANSFORMING PRE�TOKENS INTO TOKENS ��

��� Transforming Pre
Tokens into Tokens

In the second phase of the scanning process� a number of functions are applied one at a time
to the pre�token sequence� The term token� will be used to mean either pre�token or token in
this context� Each function maps token lists to token lists� and is called a token transformation
function� The functions perform tasks such as reclassifying some tokens� for example� keywords�
or converting token values to other kinds of values� These tasks� often performed �on the �y�
during traditional scanning� are much easier to prove correct when they have been isolated
from the recognition of the basic token classes� Typical token transformation functions are

� removing whitespace and comments�

� splitting a name token class into keywords and identi�ers�

� converting strings representing numbers into integer or real values�

� substituting a special token for each member of an operator token class�

� �nding and removing continuations��

� replacing a string with its length� useful for determining indentation level� and

� converting indentations �needed for the PLR
� language� for example� to proper begin�block

and end�block markers�

The last three token transformation functions are tasks that are peculiar to occam ��like
languages that use indentations to denote block structure�

����� toktrans Speci�cation for PLR
�

The following speci�cations are for the PLR
� token transformation functions� Seven token

transformation functions are necessary to transform the tokens that are recognized by the
split function into tokens that �t the concrete grammar of PLR

� � The speci�cations for these
transformations make use of the following functions and operations�

tok�name denotes the name component of a token tok

tok�value denotes the value component of a token tok

index returns the index range of a sequence

assoc�key� table� looks up the value of key in table

mk�Token�name� value� constructs a token consisting of name and value components

convert�str� base� converts a string consisting of digits in the number system base to an
integer value

length�s� returns the length of the string

�Continuations are de�ned in the occam � Reference Manual �il����
A long statement may be broken
immediately after one of the following� an operator� a comma� a semi�colon� an assignment� or the keywords
IS� FROM or FOR� A statement can be broken over several lines� providing the continuation is indented at
least as much as the �rst line of the statement�� In this token transformation function� any indentation is
removed that immediately follows the elements from the list that are contained in PLR
 �

�� CHAPTER
� SCANNING

di��cycle�start� levels� returns a list of relative indentations for a list of absolute indentations
levels and a starting level start �see a detailed description of this function on page
��

input�levels�toks� returns a list denoting absolute statement indentation levels

output�levels�toks� returns a list denoting relative statement indentation levels

The token transformation functions are speci�ed as postconditions on the transformed
token sequence�

� toktrans�� remove white space and comments

There should be no white space or comment tokens in the result�

toktrans� �toks � Token�� result � Token�

post � � i � index result � �result�i��name ! WS

� result�i��name ! COMMENT�

� toktrans�� replace op with appropriate token name

The character value of the operator is kept in the token value so that a retrieve operation
can reconstruct the character sequence without needing the table for reference�

toktrans� �toks � Token�� result � Token�

post let op�list ! f ��"�� � �� ��$�� � �� ����� � �� ��n�� REM�� ����� � ��
��#�� � �� ����� � �� ����� � �� ����� � �� ����� � � g
in
 i � index toks � if toks�i��name ! OP

then result�i� ! mk�Token �assoc �toks�i��value� op�list��
toks�i��value�

else result�i� ! toks�i�

� toktrans�� discriminate keywords and identi�ers

Again the character value of the key words and indentations is kept in the token value
so that a retrieve operation can reconstruct the character sequence without needing the
table for reference� The grammar speci�ed both a nonterminal and a terminal PROC�
The two will be di�erentiated by using PROCKW to denote the keyword PROC�

toktrans� �toks � Token�� result � Token�

post let kw�list ! f ��AND�� AND�� ��CALL�� CALL��
��FALSE�� FALSE�� ��IF�� IF�� ��INPUT�� INPUT��
��INT�� INT�� ��NOT�� NOT�� ��OR�� OR��
��OUTPUT�� OUTPUT�� ��PROC�� PROCKW��
��REC�� REC�� ��SEQ�� SEQ�� ��SKIP�� SKIP��
��STOP�� STOP�� ��TRUE�� TRUE��
��WHILE�� WHILE� g in

 i � index toks �
if toks�i��name ! NAME

then if assoc �toks�i��value� kw�list� �! NIL
then result�i� ! mk�Token �assoc �toks�i��value� kw�list��

toks�i��value�

��� TRANSFORMING PRE�TOKENS INTO TOKENS ��

else result�i� ! mk�Token �IDENT� toks�i��value�

else
result�i� ! toks�i�

� toktrans�� convert number strings to integers

toktrans� �toks � Token�� result � Token�

post
 i � index toks � if toks�i��name ! INTEGER

then result�i� ! mk�Token �INTEGER�
convert �toks�i��value� �
��

else result�i� ! toks�i�

� toktrans�� remove continuations

toktrans� �toks � Token�� result � Token�

post let continuables ! f � � � � � � REM � � � � � � � �� g in
� � i� j � index toks� j ! i"� � toks�i��name � continuables

� toks�j��name ! INDENT

� toktrans�� replace indentation value with number of blanks

toktrans� �toks � Token�� result � Token�

post
 i � index toks � if toks�i��name ! INDENT
then result�i� ! mk�Token �INDENT�

length �toks�i��value� � ��
else result�i� ! toks�i�

� toktrans�� replace absolute indentations with relative ones

toktrans� �toks � Token�� result � Token�

post � � i � index result � result�i��name ! INDENT

� di��cycle �
� input�levels �toks�� ! output�levels �result�

����� toktrans Implementations and Proofs for PLR
�

In order to state a correctness predicate for this portion of the scanning process� each token
transformation function should have a retrieve function from its output back to a normalized
form of the input� Possible retrieve functions might be computing number values of normalized
digit strings without leading zeros� or stating a relation between the input and output token
sequences� The token transformation functions are correct when the relation

retrieve�toktrans�tk��� ! normalize�tk��

can be shown to hold�

�
 CHAPTER
� SCANNING

toktrans�� Remove Whitespace and Comments

This token transformation function is for removing all elements of certain token classes from
the token sequence� This is a very simple function to implement and prove to be correct� The
speci�cation is simply a list of the names of the token classes to be removed� It does not matter
if names appear more than once in this list�

The function discard is an implementation of this function� The discard�list parameter
is a list of token names to be discarded� The token name for each token in the input token
sequence is checked against the discard list� if the token is included in the list� it is discarded�

Definition�
discard �toks � discard�list�
! if toks � nil then toks

elseif token�name �car �toks�� � discard�list
then discard �cdr �toks�� discard�list�
else cons �car �toks�� discard �cdr �toks�� discard�list�� endif

The �rst correctness predicate states that any tokens not on the discard list remain un�
changed and are in the same order as before the application of discard�

Definition�
non�discards�undisturbed �toks
 � toks� � discard�list�
! if toks
 � nil then toks� � nil

elseif token�name �car �toks
 �� �� discard�list
then �car �toks
 � ! car �toks� ��

� non�discards�undisturbed �cdr �toks
 ��
cdr �toks� ��
discard�list�

else non�discards�undisturbed �cdr �toks
 �� toks� � discard�list� endif

Theorem� discard�does�not�disturb�non�discards
non�discards�undisturbed �toks � discard �toks � discard�list�� discard�list�

The second predicate states that after application of discard� no tokens with a name on
the discard list remain�

Definition�
no�discards�left �toks � discard�list�
! if toks � nil then t

elseif token�name �car �toks�� � discard�list then f
else no�discards�left �cdr �toks�� discard�list� endif

Theorem� toktrans���main�theorem
no�discards�left �discard �toks � discard�list�� discard�list�

Both theorems are readily proven�

toktrans�� Replace op with Appropriate Token Name

This proof displayed two interesting aspects of the interaction with the prover� The �rst
implementation of the speci�cation function and the token transformation function replace

was expected to be trivial to prove� The transformation involves looking up values in a
replacement table and replacing the tokens with the lookup result� The speci�cation had
stated that� after replace� none of the tokens that were to be removed were left in the token
sequence� The prover tried to prove the conjecture for a case with a replacement table such as

��� TRANSFORMING PRE�TOKENS INTO TOKENS ��

���hugo � emil� �emil � anna��

Of course� the speci�cation is patently false in this case� all occurrences of �emil have not
been removed from the token sequence# It is impossible to determine if an �emil token in the
result token sequence is there because the transformation function missed replacing an �emil

with an �anna� or because it is a replacement for �hugo� This degenerate case is not one that
can occur in the speci�cations for PLR

� � but it is theoretically possible to specify such a case�
which would invalidate the theorem as �rst stated�

A new speci�cation had to be written that steps through the token sequence� checking if
the replacement has been properly made and all other tokens left equal� This speci�cation
was easy to prove to be correct with respect to the implementation� In order to check the
implementation� a test case was run through replace � what a surprise to �nd that nothing
had been transformed# The actions to be taken had been completely misstated� but in a
consistent way� in both the transformation function and in the speci�cation� The token names
and not the token values were being looked up in the replacement table� A parameter had
to be added to the transformation function to determine which token was to be replaced� and
then the look�up was done using the token value�

The function replace was split into two functions to provide a considerable run�time
optimization� the calculation of the domain of the replacement mapping table need only be
done once instead of as many times as there are tokens in the token sequence�

The character representation for the operator token has been left in as the value parameter�
This apparently unnecessary information will be useful when the tokens in a parse tree are
printed in order and a character sequence is obtained that can be re�scanned� parsed� and
transformed� resulting in the same tree�

Definition�
make�replace �toks � name� dom� replace�list�
! if toks � nil then toks

elseif �token�name �car �toks�� ! name�
� �car �token�value �car �toks��� � dom�

then cons �mk�token �value �car �token�value �car �toks���� replace�list��
token�value �car �toks����

make�replace �cdr �toks�� name� dom� replace�list��
else cons �car �toks��

make�replace �cdr �toks�� name� dom� replace�list�� endif

Definition�
domain �map�
! if listp �map�

then if listp �car �map�� then cons �car �car �map��� domain �cdr �map���
else domain �cdr �map�� endif

else nil endif

Definition�
replace �toks � name� replace�list�
! if listp �replace�list�

then let dom be domain �replace�list�
in
make�replace �toks � name� dom� replace�list� endlet

else toks endif

�
 CHAPTER
� SCANNING

The speci�cation for replace is replace�step� which rather trivially restates the trans�
formation function as a predicate on two lists� The statement of the main theorem is now easily
stated and readily proven� and the function replace has also been tested�

Definition�
replace�step �source� target � name� replace�list�
! if source � nil then target � nil

elseif �token�name �car �source�� ! name�
� �car �token�value �car �source��� � domain �replace�list��

then �car �target�
! mk�token �value �car �token�value �car �source���� replace�list��

token�value �car �source����
� replace�step �cdr �source�� cdr �target�� name� replace�list�

else �car �source� ! car �target��
� replace�step �cdr �source�� cdr �target�� name� replace�list� endif

Theorem� toktrans���main�theorem
�token�listp �toks� � listp �replace�list��
� replace�step �toks � replace �toks � name� replace�list�� name� replace�list�

toktrans�� Discriminate Key Words and Identi
ers

The discrimination between key words and identi�ers is taken care of with the token trans�
formation function determine�key�words� A token name is speci�ed� and for all tokens with
this name� if the token value is in the domain of a key word list� a token with the value from
the key word list replaces that token� if the value is not in the domain� a token constructed
from a default token name and the token value replaces the token�

There was the same speci�cation problem in this transformation as in toktrans�� It had
been expected that the token name specifying the tokens to be discriminated would no longer
be in the result token sequence� As demonstrated above� this is not the case� A step predicate
must be introduced and it must be proven that the implementation of the function ful�lls the
step predicate� The script for this transformation is quite similar to the one for toktrans��

Definition�
make�key�words �toks � name� dom� key�words�list � default�
! if toks � nil then toks

elseif token�name �car �toks�� ! name
then if token�value �car �toks�� � dom

then cons �mk�token �value �token�value �car �toks��� key�words�list��
token�value �car �toks����

make�key�words �cdr �toks�� name� dom� key�words�list � default��
else cons �mk�token �default � token�value �car �toks����

make�key�words �cdr �toks�� name� dom� key�words�list � default�� endif
else cons �car �toks��

make�key�words �cdr �toks�� name� dom� key�words�list � default�� endif

Definition�
determine�key�words �toks � name� key�words�list � default�
! if listp �key�words�list�

then let dom be domain �key�words�list�
in

��� TRANSFORMING PRE�TOKENS INTO TOKENS ��

make�key�words �toks � name� dom� key�words�list � default� endlet
else toks endif

Definition�
key�words�step �source� target � name� key�words�list � default�
! if source � nil then target � nil

elseif token�name �car �source�� ! name
then if token�value �car �source�� � domain �key�words�list�

then �car �target�
! mk�token �value �token�value �car �source��� key�words�list��

token�value �car �source����
� key�words�step �cdr �source�� cdr �target�� name� key�words�list �

default�
else �car �target�

! mk�token �default � token�value �car �target����
� key�words�step �cdr �source�� cdr �target�� name� key�words�list �

default� endif
else �car �source� ! car �target��

� key�words�step �cdr �source�� cdr �target�� name� key�words�list �
default� endif

Theorem� toktrans���main�theorem
�token�listp �toks� � listp �key�words�list��
� key�words�step �toks �determine�key�words �toks � name� key�words�list � default��

name� key�words�list � default�

toktrans�� Convert Number Strings to Integers

The function used to convert number strings to integers is based on the positional notation
proof in �WW�
�� In that proof two functions� nat�to�pn� a function that converts a natural
number to a list of digits with respect to a base� and pn�to�nat� a function that converts a list
of digits with respect to a base to a natural number� are shown to be inverse functions� Since
that proof makes use of an extremely large set of libraries � lists� bags� and natural numbers
� the theorems necessary for the proof have been extracted� Many can be readily proven� but
the proofs of facts about remainder and quotient are extremely intricate� Therefore there
are four axioms included for them� which can easily be seen to be true� Should one want the
proof to be axiom free� then the libraries must be loaded and the �rst part of the proof script
commented out� Either way� the proofs go through� but they are much slower with the library
included� The necessary theorems from the naturals library �which uses the lists and bags
libraries in its proofs� are

� the commutativity�of�plus�

� equal�plus��� stating that if the sum of two numbers are zero� then both must be zero�

� plus�zero�arg�� a statement of the right identity of plus�

� times�zero� the right zero for times�

� equal�times��� another statement of the times zero�

� times�add	� relating times and add	�

� plus�remainder�times�quotient� an important identity�

�� CHAPTER
� SCANNING

� lessp�quotient� necessary as a measure for some functions�

� the commutativity�of�times�

� and quotient�lessp�arg	� stating that the quotient of a and b is zero if a � b�

The four axioms used relate remainder and quotient to plus and times�

Axiom� remainder�plus

��a mod c� ! �� � ���b " a� mod c� ! �b mod c��

Axiom� quotient�plus

��a mod c� ! �� � ���b " a� � c� ! ��a � c� " �b � c���

Axiom� quotient�times�instance

��y � x� � y� ! if y � � then � else �x �x� endif

Axiom� remainder�times��instance

���x � y� mod y� ! �� � ���x � y� mod x� ! ��

The main idea of this token transformation function� called integer�convert� is to traverse
the token list� converting the values of all integer tokens to be the natural number represented
by the digit sequence� The function has been implemented and proved in such a way that it will
be easy to expand the proof to number representations that use bases other than �
� The �rst
de�nition needed is a function to determine the set of tokens e�ected by the transformation�

Definition�
is�integer�token �tok� ! �token�name �tok� ! �integer�

The token values have to be lists of digits that do not exceed the given base� The function
just�digits�less�than�b checks this property�

Definition�
just�digits�less�than�b �l � b�
! if listp �l�

then �car �l� � N� � �car �l� � b� � just�digits�less�than�b �cdr �l�� b�
else l ! nil endif

The function pn�to�nat converts a positional number l with digits of base b to a natural
number� The functions use the Horner method �Knu
�� for converting between natural and
positional numbers in order to avoid having to cope with exponents� This necessitates that the
positional numbers be �little�endian�� the least signi�cant digit must be the �rst element of
the list� The function reverse can be used on the token value of integer tokens prior to calling
this function� The function integer�convert uses base �
 for calculating the natural num�
bers� An error is returned if an invalid digit is encountered and the transformation terminates
immediately� returning the token sequence transformed up until the point of the error� The
reversing function and some facts about its relationship with other functions are stated here�

��� TRANSFORMING PRE�TOKENS INTO TOKENS ��

Definition�
reverse �l�
! if l � nil then nil else append �reverse �cdr �l��� list �car �l��� endif

Theorem� plistp�reverse
plistp �reverse �a��

Theorem� reverse�append
reverse �append �a� b�� ! append �reverse �b�� reverse �a��

Theorem� reverse�reverse
plistp �l� � �reverse �reverse �l�� ! l�

These are the conversion functions�

Definition�
pn�to�nat �l � b�
! if listp �l� then car �l� " �pn�to�nat �cdr �l�� b� � b�

else � endif

Definition�
integer�convert �toks�
! if toks � nil then toks

elseif is�integer�token �car �toks��
then let value be ascii�to�digits �token�value �car �toks���

in

if just�digits�less�than�b �value� base�
then cons �mk�token �token�name �car �toks��� pn�to�nat �reverse �value�� base���

integer�convert �cdr �toks���
else �token�error endif endlet

else cons �car �toks�� integer�convert �cdr �toks��� endif

The retrieve function uses nat�to�pn for converting a natural number to a positional
number� Note that
 is converted to nil� If it were converted to ����� this would be a
positional number with a leading zero# This precludes the use of induction at one point in the
proof� but since other rewrite rules can be formulated to avoid this� this method is used� The
only other way would be to normalize all positional numbers with exactly one leading zero�
introducing unnecessary complexity�

Definition�
nat�to�pn �n� b�
! if 	 � b

then if n � � then nil
else cons �n mod b� nat�to�pn �n � b� b�� endif

else nil endif

During the �rst test of this �proven correct� function it was determined that the speci��
cations were not tight enough� Each digit was to be a numberp� This was true� but the
implementation assumed that each digit was a number exactly corresponding to the digit rep�
resentation� � for ����
 for �
�� etc� The previous token transformation function however� does
nothing to change the representation of the digits from their original form� They are ASCII
encoded digits with �� encoding ���� �� encoding �
�� etc� which are of course numberps� but

�	 CHAPTER
� SCANNING

not decimal digits� The speci�cation had to be modi�ed to specify the di�erent digit forms
�valid�ascii�digit�p and valid�decimal�digit�p� as well as the conversion functions
ascii�to�digit and digit�to�ascii� A conversion function is applied before computing
the digit value in integer�convert� integer�tokens�well�formed� convert�back�

Definition�
ascii�to�digit �ascii�
! if �ascii � ascii�zero� � �ascii�nine � ascii� then �

else ascii
 ascii�zero endif
Definition�
ascii �to�digits �l�
! if l � nil then l

else cons �ascii�to�digit �car �l��� ascii�to�digits �cdr �l��� endif
Definition�
digit�to�ascii �digit� ! �digit " ascii�zero�
Definition�
digits�to�ascii �digits�
! if digits � nil then digits

else cons �digit�to�ascii �car �digits���
digits�to�ascii �cdr �digits��� endif

The retrieve function for converting the numbers back to a list of digits is convert�back�
Note that the result must be reversed before the token is constructed�

Definition�
convert�back �toks�
! if toks � nil then toks

elseif is�integer�token �car �toks��
then cons �mk�token �token�name �car �toks���

reverse �digits�to�ascii �nat�to�pn �token�value �car �toks��� base�����
convert�back �cdr �toks���

else cons �car �toks�� convert�back �cdr �toks��� endif

Theorem �using axioms�� inverse�

��	 � b� � �n � N� � �b � N��
� �pn�to�nat �nat�to�pn �n� b�� b� ! n�

Leading zeros are not acceptable in a well�formed positional notation list� and since the
numbers are in reverse order� the last digit must not be zero�

Definition�
lastdigit �l�
! if listp �l�

then if cdr �l� �! nil then lastdigit �cdr �l��
else car �l� endif

else f endif

Definition� no�leading�zeros �l� ! �lastdigit �l� �! digit�zero�

All the properties of a well�formed positional number are collected into one de�nition�

��� TRANSFORMING PRE�TOKENS INTO TOKENS ��

Definition�
well�formed�pn �l � b�
! ��	 � b� � plistp �l� � �b � N�

� no�leading�zeros �l� � just�digits�less�than�b �l � b��

This is the interesting inverse function� which is only valid for numbers without leading
zeros and containing only digits less than the base� which itself must be greater than one�

Theorem �using axioms�� inverse�

well�formed�pn �l � b� � �nat�to�pn �pn�to�nat �l � b�� b� ! l�

The statement of correctness for the token transformation function integer�convert is
given by stating a retrieve function� convert�back and proving that the two are inverse func�
tions on well�formed input�

Definition�
integer�tokens�well�formed �toks�
! if toks � nil then t

elseif is�integer�token �car �toks��
then no�leading�zeros �reverse �ascii�to�digits �token�value �car �toks�����

� valid�ascii�digits�p �token�value �car �toks�� �
� just�digits�less�than�b �reverse �ascii�to�digits �token�value �car �toks����� base�
� plistp �ascii�to�digits �token�value �car �toks����
� integer�tokens�well�formed �cdr �toks��

else integer�tokens�well�formed �cdr �toks�� endif

Definition�
convert�back �toks�
! if toks � nil then toks

elseif is�integer�token �car �toks��
then cons �mk�token �token�name �car �toks���

reverse �digits�to�ascii �nat�to�pn �token�value �car �toks��� base�����
convert�back �cdr �toks���

else cons �car �toks�� convert�back �cdr �toks��� endif

Theorem �using axioms�� toktrans�	�main�theorem

�token�listp �toks� � integer�tokens�well�formed �toks� � listp �toks��
� �convert�back �integer�convert �toks�� ! toks�

The following events are also necessary for the proof�

� The de�nition of a predicate stating that a positional number is free of leading zeros
no�leading�zeros�

� A predicate to determine when the integer tokens of a token list are well formed� inte�
ger�tokens�well�formed� This includes the appropriate reversals of the token values�

� A lemma� toktrans���help	� stating that reversing a list that has the property of having
just�digits�less�than�b �b is the base�� does not disturb the property�

�� CHAPTER
� SCANNING

� A lemma� toktrans���help�� stating that if a list is a proper list and the reversal of the
list has the just�digits�less�than�b property� then the list itself has this property�
Note that reversing a litatom results in nil� which has the just�digits�less�than�b
property� This is the reason for including the proper list hypothesis�

� A lemma� toktrans���help�� giving a rewrite rule for a case in which the integer token
is not well formed� The prover could not see this on its own�

toktrans�� Remove Continuations

As noted above� the programming language occam � has a rather odd rule about the continu�
ation of lines� Since there is no statement�delimiting token� it is not trivial to �nd the extent
of� for example� an expression on the right�hand side of an assignment statement� Instead of
using the o�side rule �Lan���� occam � speci�es that breaks may only occur after speci�ed
tokens� and that the continuations must be indented at least as much as the current line�

Such continuations are not necessary when there are explicit statement delimeters� They do
cause problems in the transformation from absolute to relative indentations� as these indenta�
tions do not denote a block boundry� but only scope inclusion# Since only the one�dimensional
sequence of tokens is of interest� and problems such as the �xed line size for editors is irrelevant�
a token transformation function will be used to recognize and remove continuations�

In PLR
� there are eight tokens that are members of the �continuable token� list� � � � � � �

REM� � � � � � � and �� � Continuations can be recognized when the current token is in this
list� If the next token is an indentation� it is removed� The level is not checked� if the level is
incorrect� the program will not parse anyway� Of course� the problem could be recognized at
this early stage� but the simplest possible method was chosen�

The function is�kw�indentation is used to recognize the pre�indentations that have the
keyword INDENT as a token name� is�indentation recognizes an indentation with a num�
ber as the value�

Definition�
is�kw�indentation �x� ! �token�name �x� ! �indent�

Definition�
is�indentation �x� ! �is�kw�indentation �x� � �token�value �x� � N��

Definition�
discontinue �toks � continue�list�
! if toks � nil then toks

elseif token�name �car �toks�� � continue�list
then if is�kw�indentation �cadr �toks��

then cons �car �toks�� discontinue �cddr �toks�� continue�list��
else cons �car �toks�� discontinue �cdr �toks�� continue�list�� endif

else cons �car �toks�� discontinue �cdr �toks�� continue�list�� endif

A token list contains no continuations when the token following a member of the continu�
ation list is never an indentation token�

Definition�
no�continuations�p �toks � continue�list�
! if toks � nil then t

elseif token�name �car �toks�� � continue�list
then if is�kw�indentation �cadr �toks�� then f

��� TRANSFORMING PRE�TOKENS INTO TOKENS ��

else no�continuations�p �cdr �toks�� continue�list� endif
else no�continuations�p �cdr �toks�� continue�list� endif

The formulation of the main theorem appeared to be trivial�

Theorem� main�theorem�toktrans��
� no�continuations�p �discontinue �toks � continue�list�� continue�list�

The proof� however� would not go through� The prover balked for the case of a token
sequence containing empty lines� This problem had been encountered before� in the �rst
implementation of the indentator removal� described in the token transformation functions
toktrans� and toktrans�� If a token sequence has empty lines� i�e� there is more than one
indentation in sequence� then the function discontinue only removes the �rst one� and thus
the property no�continuations�p does not hold�

So the empty line removal was pulled up to this token transformation function� in order
to have access to the function no�empty�lines� The function that removes the empty lines is
named toktrans��a and the one that removes indentations toktrans��b� In an optimization
these two functions could easily be collapsed� as they have a similar case structure� See �WW���
for more information on how pass collapsing can be done�

Definition�
remove�empty�lines �l�
! if l � nil then l

elseif is�kw�indentation �car �l�� � ��cdr �l� � nil� � is�kw�indentation �cadr �l���
then remove�empty�lines �cdr �l��
else cons �car �l�� remove�empty�lines �cdr �l��� endif

Definition�
no�empty�lines �l�
! if l � nil then t

elseif is�kw�indentation �car �l��
� ��cdr �l� � nil� � is�kw�indentation �cadr �l��� then f

else no�empty�lines �cdr �l�� endif

Theorem� main�theorem�toktrans��a
no�empty�lines �remove�empty�lines �l��

The main theorem for discontinue� now renamed toktrans��b� includes the precondition
on the token sequence no�empty�lines�

Theorem� main�theorem�toktrans��b
no�empty�lines �toks�
� no�continuations�p �discontinue �toks � continue�list�� continue�list�

It seemed to hang on the question of what exactly no�empty�lines meant� So a theorem
about the meaning was formulated and easily proven�

Theorem� no�empty�lines�meaning
�no�empty�lines �toks� � is�kw�indentation �car �toks���
� �� is�kw�indentation �cadr �toks���

�
 CHAPTER
� SCANNING

It still would not prove� The trouble was that the prover did not see that the �rst element
of a token sequence is always preserved over discontinue � if anything is removed� it�s the
second element of the token list� I formulated and proved

Theorem� discontinue�car
listp �toks� � �car �toks�� ! �car �discontinue �toks � list��

This turned out to be a catastrophic rewrite rule� all further attempts provoked stack
over�ows� as all �car x� could be rewritten to �car �discontinue x list��� a looping
rewrite rule� But turning around the equality is exactly the rewrite rule needed�

Theorem� discontinue�car
listp �toks� � �car �discontinue �toks � list�� ! car �toks��

Now the main theorem can be proven� A function toktrans�� is de�ned to hide the use
of two passes instead of one from the user�

Definition�
toktrans�� �toks � continue�list�
! remove�empty�lines �discontinue �toks � continue�list��

toktrans�� Replace Indentation Value With Number of Blanks

This token transformation function prepares the token sequence for replacing the absolute
indentations with relative ones� There are two tasks involved� which as in the previous function
are proved separately� but could easily be collapsed into one pass�

The �rst task is the replacement of the token value of all indentations tokens� which are
character strings consisting of a carriage return and an even number of blanks �zero blanks
are possible�� with the number of blanks� This is one less than the length of the string�

Definition�
prepare�indentations �toks�
! if toks � nil then toks

elseif is�kw�indentation �car �toks��
then cons �mk�token �token�name �car �toks��� length �token�value �car �toks���
 ���

prepare�indentations �cdr �toks���
else cons �car �toks�� prepare�indentations �cdr �toks��� endif

The speci�cation from above is encoded in the function ok�indentation�value� Two
token sequences l� and l� are checked to see if they are in step with respect to the value
transformation� If the �rst token on each list is an indentation� then they have the same token
name� and the value of l� must be equal to one less than the length of the value in l�� If the
tokens are not indentations then they must be left untouched by the transformation�

Definition�
ok�indentation�value �l
 � l� �
! if l
 � nil then l� � nil

else if is�kw�indentation �car �l
 ��
then �token�name �car �l
 �� ! token�name �car �l� ���

� �token�value �car �l� �� ! �length �token�value �car �l
 ���
 ���
else car �l
 � ! car �l� � endif
� ok�indentation�value �cdr �l
 �� cdr �l� �� endif

��� TRANSFORMING PRE�TOKENS INTO TOKENS ��

Theorem� toktrans��a�main�theorem
�token�listp �toks� � listp �toks�� � ok�indentation�value �toks � prepare�indentations �toks��

The second task is the halving of the indentation token values� as two blanks denote one
level� The function half halves one number� and the function halve halves an entire list�

Definition� half �n� ! �n � ��

Definition�
halve �l�
! if l � nil then l

elseif is�indentation �car �l��
then cons �mk�token �token�name �car �l��� half �token�value �car �l����� halve �cdr �l���
else cons �car �l�� halve �cdr �l��� endif

One of the properties that must be proven about halving is that the indentation positions
are preserved� The theorem indent�positions�preserved�halve is not di�cult to prove�

Definition�
indent�positions�preserved �l
 � l� �
! if l
 � nil then l
 ! l�

elseif is�indentation �car �l
 ��
then is�indentation �car �l� ��

� indent�positions�preserved �cdr �l
 �� cdr �l� ��
else �car �l
 � ! car �l� ��

� indent�positions�preserved �cdr �l
 �� cdr �l� �� endif

Theorem� indent�positions�preserved�halve
indent�positions�preserved �l � halve �l��

When is a list of tokens �halved� with respect to another list of tokens� The function
collect�indents collects only the indentations from a token list� The function that takes
care of checking that the indentations do not change place and that all other tokens remain
unchanged� is indent�positions�preserved� In order to prove that halve applied to a list
results in a list which is in the halved�listp relation to the original list� a small lemma about
the behavior of collect�indents on a parameter that is not a list is needed�

Definition�
collect�indents �l�
! if l � nil then nil

elseif is�indentation �car �l��
then cons ��x �token�value �car �l���� collect�indents �cdr �l���
else collect�indents �cdr �l�� endif

Theorem� collect�indents�nlistp
�l � nil� � �collect�indents �l� ! nil�

Definition�
halved�listp �l
 � l� �
! if l
 � nil then l� � nil

else �car �l� � ! half �car �l
 ��� � halved�listp �cdr �l
 �� cdr �l� �� endif

 CHAPTER
� SCANNING

Theorem� indents�halved
halved�listp �collect�indents �l�� collect�indents �halve �l���

As an example of combining passes� the function toktrans��� which will be opened up in
the proof� is de�ned as well as a combined ok�toktrans�� predicate� The theorem using this
predicate is readily proven�

Definition�
toktrans�� �toks� ! halve �prepare�indentations �toks��

Definition�
ok�toktrans�� �l
 � l� �
! if l
 � nil then l� � nil

else if is�kw�indentation �car �l
 ��
then �token�name �car �l
 �� ! token�name �car �l� ���

� �token�value �car �l� �� ! half �length �token�value �car �l
 ���
 ���
else car �l
 � ! car �l� � endif
� ok�toktrans�� �cdr �l
 �� cdr �l� �� endif

Theorem� main�theorem�toktrans��
ok�toktrans�� �toks � toktrans�� �toks��

toktrans�� Replace Absolute Indentations with Relative Ones

The previous token transformation functions have been rather trivial to implement and prove
correct� The implementation and proof of the token transformation function that is also called
the indentator is much more complex� It was only possible to prove any part of it correct after
the halving had been removed to a previous pass� As soon as any sort of arithmetic appeared
in a theorem� many mostly irrelevant rewrite rules could be applied� The pool of subgoals to
be proven soon �lled with lemmata that did not help� and the proof wandered down a path that
did not lead to the goal� Separating out the numerical portions helped focus the proof on the
important steps� First the task of this token transformation function is discussed� De�nitions
of absolute and relative indentations are needed for this� as well as a function relating the two�

De
nition � A token sequence is said to contain absolute indentations when the block and
statement structure is de�ned using the o�side rule and represented by indentation tokens that
denote the level on which the current statement began�

De
nition � A token sequence is said to contain relative indentations when there are three
tokens representing block begin� block end� and statement delimitation� that are used for ex�
pressing the block and statement structure�

The tokens that we use for the relative indentations are NI �next indentation�� SI �same
indentation or statement delimitation�� and BI �back indentation�� They are necessary for PLR

�

so that a �nite context�free grammar can be used for parsing the language	� The task of the
indentator is to transform a token sequence containing absolute indentations into one that uses
NI� SI� and BI to denote the same block and statement structure using relative indentations�

A major problem was the speci�cation� What relationship do token sequences have with
one another that only di�er in using absolute or relative indentations� I deliberated with

�See �WW��� for a detailed discussion of the o�side rule and the problems in resolving this non�context�free
property�

��� TRANSFORMING PRE�TOKENS INTO TOKENS
�

William R� Bevier at CLInc on this question while we attempted a proof of the indentator
function that has served as a basis for this proof �WW�
�� We �nally came up with a function
to describe the relationship that we called di��cycle� as there is a cyclic di�erence relationship�
The function is applied to a starting level old and a list of integers representing the absolute
indentation levels of each statement in sequence� The result is a list of numbers one longer than
the list� for the absolute indentations with each number representing the relative di�erence to
the previous level�

di��cycle �old� �a b c d � � � y z�� ! �a
 old b
 a c
 b � � � z
 y old
 z�
di��cycle �
� �� � � � 	 � 	�� ! ��
 � � �
 � �
 	�

This can be used as a speci�cation for indentator� diff�cycle	 creates the relative in�
dentation number list by remembering the original level and the previous one� diff�cycle

is the outer function that is called with the starting level� The function pdiff is a proper
di�erence function � NQTHM�s difference does not handle negative numbers � that uses fix
for coercing non�numerical parameters to
� calculates the di�erences� and constructs negative
numbers as appropriate� At this point two lemmata can be proven about the result of applying
diff�cycle	 to a listp or nlistp �rst parameter�

Definition�
pdi� �i � j �
! if �x �i� � �x �j � then
 �j
 i�

elseif �x �i� ! �x �j � then �

else i
 j endif

Definition�
di��cycle� �l � orig � prev�
! if l � nil then list �pdi� �orig � prev��

else cons �pdi� �car �l�� prev�� di��cycle� �cdr �l�� orig � car �l��� endif

Theorem� di��cycle��nlistp
�l � nil� � �di��cycle� �l � orig � prev� ! list �pdi� �orig � prev���

Theorem� di��cycle��listp
listp �l�
� �di��cycle� �l � orig � prev� ! cons �pdi� �car �l�� prev�� di��cycle� �cdr �l�� orig � car �l����

Definition� di��cycle �l � old� ! di��cycle� �l � old � old�

The work of the indentator is also split into two parts� First the di�erences are calculated
and each indentation token replaced by an absolute indentation token that gives the mag�
nitude and direction of the indentation� A two�level step in is noted as ��relative � ��� a
three�level step out as ��relative � ���� The token name �relative must be a fresh� i�e�
unused� token name� The function called emit	 cdrs down the token list� �looking back�� or
remembering the level of the previous statement� and comparing it to the current level� The
function emit�relative decides whether a positive� zero� or negative number is necessary� If
the current level is larger than the previous one� this is a step out or a block beginning and it
has a positive value� If the current level is the same� this is the same indentation level� and so
the value is zero� If the current level is smaller than the previous level� this is a step back or
a block end� and thus it has a negative value
� The function emit	 still has to decide what to

	The function negative�guts is the accessor function for the shell minus that is part of the prover�s basic
set of shells and theorems�

� CHAPTER
� SCANNING

do if it is presented with an improper indentation� that is� one for which the token value has
not been converted to a proper number�

Definition�
is�relative �tok�
! �tokenp �tok�

� �token�name �tok� ! �relative�
� ��token�value �tok� � N� � �negativep �token�value �tok��

� �negative�guts �token�value �tok�� �! �����

Definition�
emit�relative �i � j �
! if �x �i� � �x �j � then mk�token ��relative�
 �j
 i��

elseif �x �i� ! �x �j � then mk�token ��relative� ��
else mk�token ��relative� i
 j � endif

Definition�
emit� �l � orig � prev�
! if l � nil then list �emit�relative �orig � prev��

elseif is�kw�indentation �car �l��
then if is�indentation �car �l��

then cons �emit�relative �token�value �car �l��� prev��
emit� �cdr �l�� orig � token�value �car �l����

else emit� �cdr �l�� orig � prev� endif
else cons �car �l�� emit� �cdr �l�� orig � prev�� endif

Definition� emit �l � old� ! emit� �l � old � old�

The proof that this function results in �relative tokens that are in di��cycle to the indent�
ations is relatively straight forward� It must be stated that the original sequence contained no
�relative tokens� that the starting level is a natural number� and that the sequence is a list
of tokens� The �meaning� function relative�meaning �lters out the values of the �relative
tokens� resulting in the same list as the diff�cycle� Only one lemma is needed to show how
diff�cycle	 behaves when the starting level is not a number� The lemma emit	�theorem

will open up 	
 sub�cases� but all are trivial and readily proven by the prover�

Definition�
relative�meaning �l�
! if l � nil then nil

elseif is�relative �car �l��
then cons �token�value �car �l��� relative�meaning �cdr �l���
else relative�meaning �cdr �l�� endif

Definition�
relative�free �l�
! if l � nil then t

elseif tokenp �car �l��
then �token�name �car �l�� �! �relative� � relative�free �cdr �l��
else f endif

Theorem� di��cycle��not�numberp
�v �� N� � �di��cycle� �z � orig � v� ! di��cycle� �z � orig � ���

��� TRANSFORMING PRE�TOKENS INTO TOKENS
�

Theorem� emit��theorem
�relative�free �l� � �old � N� � token�listp �l��
� �relative�meaning �emit� �l � orig � prev�� ! di��cycle� �collect�indents �l�� orig � prev��

Theorem� emit�theorem
�relative�free �l� � �old � N� � token�listp �l��
� �relative�meaning �emit �l � old�� ! di��cycle �collect�indents �l�� old��

The second pass replaces the �relative tokens with the appropriate number of single
relative indentation tokens� If the value is positive� that number of NI tokens replace the
�relative token� a SI replaces a value of
� and the absolute value of a negative �relative

token is the number of BI tokens that replace it� The function make�list constructs a list
with n copies of the parameter value v and is used for this�

Definition�
make�list �v � n�
! if �n � �� � �n �� N� then nil

else cons �v � make�list �v � n
 ��� endif

Theorem� length�make�list
length �make�list �v � n�� ! �x �n�

Theorem� not�numberp�make�list
�n �� N� � �make�list �x � n� ! nil�

Theorem� listp�make�list
�� � �x �n�� � listp �make�list �x � n��

Theorem� make�list�zero
�n ! �� � �make�list �x � n� ! nil�

Theorem� plist�make�list
plist �make�list �v � n�� ! make�list �v � n�

The function ni�si�bis is the one that decides how many of what sort of token to issue�
relative�to�ni�si�bi replaces the entire sequence�

Definition�
ni�si�bis �n�
! if n ! � then make�list �mk�token ��si� nil�� 	�

elseif � � n then make�list �mk�token ��ni� nil�� n�
else make�list �mk�token ��bi� nil�� negative�guts �n�� endif

Definition�
relative�to�ni�si�bi �toks�
! if toks � nil then toks

elseif is�relative �car �toks��
then append �ni�si�bis �token�value �car �toks����

relative�to�ni�si�bi �cdr �toks���
else cons �car �toks�� relative�to�ni�si�bi �cdr �toks��� endif

	 CHAPTER
� SCANNING

The important question now is how to specify that the conversion to the relative tokens
was correct� The conversion appears to be a trivial one� and it might be hard to envision how
to state and prove a believable correctness predicate� The function relative�conversion�ok

compares two token sequences� pre� containing ��relative � n� tokens representing the
indentations� and post� with the corresponding NI�SI�BI tokens� If a token in pre is not
a relative token� then the exact same token is found in post� If it is a relative token� then
there is an appropriate pre�x on post � a SI token if the relative indentation is zero� and the
corresponding number of NI or BI tokens depending on the direction of the indentation� An
important detail is that when the token sequence pre has been exhausted� there must only be
BI tokens left on post� corresponding to the �nal closing indentations that must be issued�

The function relative�conversion�ok recurs on the CDR of pre and on post without the
current NI�SI�BI pre�x� The function how�much is the key to determining how many tokens
are to be removed�

Definition�
matches �n� toks�
! if toks � nil then f

elseif n ! � then car �toks� ! mk�token ��si� nil�
elseif � � n
then �rstn �n� toks� ! make�list �mk�token ��ni� nil�� n�
else �rstn �negative�guts �n�� toks�

! make�list �mk�token ��bi� nil�� negative�guts �n�� endif

Definition�
how�much �n�
! if n ! � then 	

elseif � � n then �x �n�
else negative�guts �n� endif

Definition�
relative�conversion�ok �pre� post�
! if pre � nil

then if post � nil then t

else �token�name �car �post�� ! �bi�
� relative�conversion�ok �pre� cdr �post�� endif

elseif is�relative �car �pre��
then matches �token�value �car �pre��� post�

� relative�conversion�ok �cdr �pre��
restn �how�much �token�value �car �pre���� post��

else �car �pre� ! car �post��
� relative�conversion�ok �cdr �pre�� cdr �post�� endif

The proof is now quite straight�forward with the exception of one important detail � the
prover notes that it is not a theorem if the pre replacement token sequence contains a token with
the name �relative� but with a token value that is neither a natural number or a negative
number� At this point the recognizer function is�relative was made more restrictive� as
the proposed lemma is not correct if the negative zero� �minus �� is the token value# This
problem� having two representations for zero� had occurred many times in the past� but always
in conjunction with other number theoretic problems� Now� this was the only problem and
was repaired by expanding the recognizer function for relatives� to not accept a token value of
�minus ��� Then all that was needed was the predicate all�relative�tokens�good for the

��� TRANSFORMING PRE�TOKENS INTO TOKENS
�

hypothesis of the correctness theorem� which states that if a token has the name �relative�
then it is a well�formed token with respect to its value� Now the theorem is easily proven�

Definition�
all�relative�tokens�good �toks�
! if toks � nil then t

elseif token�name �car �toks�� ! �relative

then is�relative �car �toks�� � all�relative�tokens�good �cdr �toks��
else all�relative�tokens�good �cdr �toks�� endif

Theorem� relative�theorem
�token�listp �toks� � all�relative�tokens�good �toks��
� relative�conversion�ok �toks � relative�to�ni�si�bi �toks��

Two little lemmata are also easily proven showing that the result of applying emit	 to
a token sequence that is free of any tokens having the token name �relative will result in
a token sequence containing only proper relative token� These lemmata prove that the two
passes can be used together� They act as a sort of glue� Finally� the indentator is de�ned to
be both passes started from the level zero�

Theorem� glue�
�token�listp �toks� � relative�free �toks��� all�relative�tokens�good �emit� �toks � n� m��

Theorem� glue�
token�listp �toks� � token�listp �emit� �toks � n� m��

Definition� indentator �l� ! relative�to�ni�si�bi �emit� �l � �� ���

There are of course further theorems that can be proven about the indentator to increase
con�dence in the implementation� An obvious one is a theorem about the result of applying
indentator to a token list� There should be no absolute indentation tokens in the result�
All have been transformed to something by the function� This speci�cation is stated by the
function indent�free� which is a predicate returning T if no indentations were found�

Definition�
indent�free �l�
! if l � nil then � is�kw�indentation �l�

elseif is�kw�indentation �car �l�� then f

else indent�free �cdr �l�� endif

Some typical theorems about interactions of indent�free with other functions� and a
statement about a degenerate case must be proven before the indentation�freeness of the result
of the indentator can be shown�

Theorem� indent�free�cons
�indent�free �a� � �� is�kw�indentation �b���� indent�free �cons �b� a��

Theorem� indent�free�append
�indent�free �a� � indent�free �b�� � indent�free �append �a� b��

Theorem� indent�free�make�list
indent�free �a� � indent�free �make�list �a� n��

� CHAPTER
� SCANNING

Theorem� indent�free�relative�to�ni�si�bi
�token�listp �x� � indent�free �x�� � indent�free �relative�to�ni�si�bi �x��

Theorem� indent�free�emit�
�n � N� � indent�free �emit� �z � �� n��

Theorem� indent�free�indentator
token�listp �l� � indent�free �indentator �l��

��� Finding an Adequate Representation for Tokens

An adequate representation for a sequence of tokens is a sequence of characters which� when
rescanned� results in the same sequence of tokens� This is a way of increasing con�dence in
the token transformation function chosen� Some of the retrieve functions from the token trans�
formation functions will be useful in this e�ort� but the functions that use stepping functions
will need new retrieval functions� The retrieval functions will be applied in the opposite order
of the token transformation phase�

Replace Relative Indentations with Absolute Ones

The proof of the token transformation function unfortunately did not use a retrieval function�
but showed that the relative indentations were in step with the absolute ones� Since extraneous
indentations will be stripped away� an absolute indentation can be issued for every relative
one encountered# The level will be determined as in the stepper� remembering the previous
level and changing it as dictated by the current relative indentation� retrieve�indents	 is
the recursive call and retrieve�indents the function to be called from the �outside��

Definition�
is�ni�si�bi �tok�
! ��token�name �tok� ! �ni� � �token�name �tok� ! �bi� � �token�name �tok� ! �si��

Definition�
retrieve�indents� �level � toks�
! if toks � nil then nil

elseif is�ni�si�bi �car �toks��
then let next be if token�name �car �toks�� ! �ni

then � " level
elseif token�name �car �toks�� ! �bi

then level
 �
else level endif

in
cons �mk�token ��indent� next��retrieve�indents� �next � cdr �toks��� endlet

else cons �car �toks�� retrieve�indents� �level � cdr �toks��� endif

Definition� retrieve�indents �toks� ! retrieve�indents� ��� toks�

Replace Number of Blanks with Blanks

The token sequence now contains indentation tokens that have the indentation level in the
value position� This number must be doubled �one indentation level is denoted by two blanks�
and then a list of characters containing a newline character and the corresponding number
of blanks is made� Constant functions are de�ned for these characters� making the retrieval
function simple�

�
� FINDING AN ADEQUATE REPRESENTATION FOR TOKENS
�

Definition� bl ! ��

Definition� nl ! 	�

Definition�
retrieve�blanks �toks�
! if toks � nil then nil

elseif is�indentation �car �toks��
then cons �mk�token �token�name �car �toks���

cons �nl� my�make�list �bl� � � token�value �car �toks������
retrieve�blanks �cdr �toks���

else cons �car �toks�� retrieve�blanks �cdr �toks��� endif

There is nothing to retrieve for toktrans� as this transformation only discards unneeded
continuations and empty lines�

Convert Integers to Strings

The value component of integer tokens must then be converted back to the string representation
of the integer� Luckily a retrieval function� convert�back� is already de�ned�

Collapsing Keywords and Identi
ers

Since a stepper was used in the proof of toktrans� a de�nition for a new function is needed�
This value is returned for all tokens that are either the default token �for PLR

� IDENT� or
the members of the domain of the keyword list� All other tokens are left untouched�

Definition�
squash �toks � name� key�words�list � default�
! if toks � nil then toks

else let dom be domain �key�words�list�
in

if �token�name �car �toks�� ! default�
� �token�value �car �toks�� � dom�

then cons �mk�token �name� token�value �car �toks����
squash �cdr �toks�� name� key�words�list � default��

else cons �car �toks��
squash �cdr �toks�� name� key�words�list � default�� endif endlet endif

Compacting the Operators

The original representation of the operators was also kept in the token value� so again only the
replacement list domain need be consulted to see which tokens represented members of the
character class Lop�

Definition�
compact �toks � name� replace�list�
! if toks � nil then toks

else let dom be domain �replace�list�
in
if car �token�value �car �toks��� � dom
then cons �mk�token �name� token�value �car �toks����

compact �cdr �toks�� name� replace�list��
else cons �car �toks��

compact �cdr �toks�� name� replace�list�� endif endlet endif

 CHAPTER
� SCANNING

Inserting White Space

A mimimal amount of white space is needed in order to distinguish the tokens when scanning
again� A blank must be put between every token� except after an indentation token� Since this
is the last retrieval function� the token names are no longer needed and a character sequence
can be constructed�

Definition�
spacing �toks�
! if toks � nil then toks

elseif is�indentation �car �toks��
then append �token�value �car �toks��� spacing �cdr �toks���
else append �token�value �car �toks��� append �list �bl�� spacing �cdr �toks���� endif

The explicit call for retrieving PLR
� character sequences is given in Appendix A�	

A Proof of Adequacy�

In order to prove the representation to be adequate� the following conjecture should be proven�

Conjecture� scan�retrieve�is�identity
token�listp �toks�
� �scan �nfsa� cc�

retrieve �toks � discard�name� replace�words � determine�default �
key�words � determine�name� �

discard�list �
replace�words �
key�words �
continue�list �
discard�name�
determine�name�
determine�default�

! toks�

This is� however� not trivial to prove� as the indentation conversion and retrieval processes
do not �t together nicely� One can� however� for a concrete character sequence� produce
the token sequence� retrieve a normalized character sequence and re�scan that� The two token
sequences must be identical� This was attempted in two small experiments with PLR

� programs�
a �	�character sequence and a ���character sequence both retrieved to a normal form� However�
each scanning takes approximately ��� hours computation time due to the exponential nature
of the scanning implementation� If it is deemed absolutely necessary to have completely proven
correct scanners for languages with such structures as indentations� then more work will have
to be invested at this point�

Chapter �

The Parsing Skeleton

This chapter is concerned with specifying the properties of a shift�reduce� table�driven parser
skeleton� implementing it and proving it to be correct� Such a parser can be used with a table
generated by a parser table generator for constructing a parse tree for an input sequence of
tokens� Although the correctness proof was not completely conducted� the mechanical correct�
ness proof for major invariants are demonstrated�

A shift�reduce parser is a special kind of �nite pushdown transducer� Such a mechanism has
a �nite control table� It has access to the next symbol in the input stream� and it makes use of
a pushdown stack� Di�erent sorts of information are usually kept on the pushdown stack� the
current parsing symbols� the current states� and the trees constructed� These can be separated
into a con�guration with three explicit stacks� a symbol stack� a state stack and a tree stack�
so that statements can be made about invariants that must hold on the components during
parsing� The reductions� which are normally emitted by the transducer� can also be collected
into a con�guration component called the reduction sequence or parse string� In addition� a
representation for the derivation will be constructed as a further con�guration component�

The �nite control table must indicate at each step of the machine one of three actions�
depending on the current state and the current lookahead symbol� The parser must either

� shift the current lookahead onto the symbol stack and determine the next state�

� reduce� using a production from the grammar� or

� declare an error�

There is a special reduction action that is sometimes called the accept action� This is a
reduction by the axiomatic production� at which time there should be only one element on the
tree stack� This is the concrete syntax tree corresponding to a right parse of the string�

It is interesting to note that� no matter how the parsing table determines which of the actions
is to take place at every step� if the machine terminates with the accept condition holding� then
the parsing has been conducted correctly for that input sequence# This is because a number of
invariants hold for parsing� determining that the parse tree always contains a right derivation
for the input sequence and the symbols seen are in the frontier of the tree� This proof will be
discussed in detail in section ����� �

The speci�cations� implementations� and proofs of correctness presented in this chapter
are grouped into data representations and functions� A representation for stacks is needed
for the three stacks used in the con�guration� as well as representations for grammars� trees�
con�gurations� and derivations� The functions for accessing the parsing tables and the parsing
skeleton function itself are then presented�

�

�
 CHAPTER �� THE PARSING SKELETON

��� Data Types

Some of the data types� such as the stack� will be familiar to the reader� Others� such as the
con�guration� are speci�cally constructed for the parsing skeleton�

	���� Stacks

The typical stack implementation with top� push� and pop will be extended by functions such
as pop�n� which removes a number of elements from a stack� and top�n which creates a list
of the top n elements of a stack� with the top of the stack being the last element of the list�
A function from�bottom �reads� the stack from the bottom� creating a list of the elements
in reverse stack order� This way of reading the stack is necessary for stating and proving
invariants of parsing� The function signatures are�

is�stack � Any
� B

emptystack �
� Stack
push � Element 	 Stack
� Stack
pop � Stack
� Stack
top � Stack
� Element
is�empty � Stack
� B

pop�n � N� 	 Stack
� Stack
top�n � N� 	 Stack
� Element�

stack�length � Stack
� N
from�bottom � Stack
� Element�

A shell can be used for implementing this basic type�

Event� Add the shell push� with bottom object function symbol emptystack � with recognizer
function symbol is�stack � and � accessors� top� with type restriction �none�of� and default
value zero� pop� with type restriction �one�of is�stack� and default value emptystack�

One problem with the shell implementation is that there is no way to instantiate a stack
to a speci�c element type� the type restriction facility for shell construction is not powerful
enough for this� There are two �types�� states and symbols� which could both be represented
by literal atoms� The �nest type restriction that could be used would be litatom� however� so
they cannot be di�erentiated� This is unfortunate� as it will propagate throughout the proofs�
it will be necessary to include type checking terms into many hypotheses�

The function is�empty returns T only if its parameter is a stack equal to emptystack� The
de�nition is trivial and straight�forward�

Definition�
is�empty �s� ! if is�stack �s� then s ! emptystack else f endif

The function pop�n removes n elements from a stack by repeated applications of pop�

Definition�
pop�n �n� s�
! if � is�stack �s� then s

elseif n � � then s
else pop�n �n
�� pop �s� � endif

The function top�n returns the top n elements of a stack as a list with the top of the stack as
the last list element� The de�nition uses the list shell constructor for making a singleton list

���� DATA TYPES ��

and the satellite function� append to concatenate the singleton list containing the top of the
stack to the list obtained by recurring on a diminished value of n�

Definition�
top�n �n� s�
! if �� is�stack �s� � � �s ! emptystack � then nil

elseif n � � then nil
else append �top�n �n �� pop �s��� list �top �s��� endif

It is easy to show that the result of popping an empty stack any number of times results in
the empty stack� That is� there is not an exception condition such as �stack under�ow�� but a
total de�nition such as the one found in the Boyer�Moore logic for natural numbers�

Theorem� pop�n�emptystack
�size � N� � �pop�n �size� emptystack� ! emptystack�

The function stack�length returns the number of elements in a stack� Along with the trivial
implementation it can easily be proven that the length of a non�empty stack is non�zero�

Definition�
stack�length �s�
! if �� is�stack �s� � � is�empty �s� then �

else � " stack�length �pop �s� � endif

Theorem� not�empty�not�zero
�is�stack �stack� � �� is�empty �stack���
� �� � stack�length �stack� �

The function from�bottom reads the stack from the bottom� returning the list of elements of
the stack in reverse stack order� i�e� the top element is last and the bottom element is �rst in
the list� It was necessary to have the function explicitly terminate on a non�stack� otherwise
the parameter would be coerced to � and the function would actually be non�terminating�

Definition�
from�bottom �s�
! if is�empty �s� � �� is�stack �s� � then nil

else append �from�bottom �pop �s� �� list �top �s� �� endif

Since from�bottom is heavily used in the main proof� a number of theorems about its
properties are needed� One is the relationship with pop�n� one is about the relationship with
push� and one states that the result of from�bottom is a proper list�

Theorem� append�from�bottom�pop�n
is�stack �s� � �append �from�bottom �pop�n �n� s��� top�n �n� s�� ! from�bottom �s��

Theorem� from�bottom�push
is�stack �b� � �from�bottom �push �a� b�� ! append �from�bottom �b�� list �a���

Theorem� plistp�from�bottom
is�stack �s� � plistp �from�bottom �s��

There is also a minor lemma about stacks that is necessary as part of determining measures
for other functions that use the push shell� The lemma lessp�pop�stack proves that the
application of pop to a non�empty stack will result in a stack with fewer elements�

Theorem� lessp�pop�stack
�is�stack �s� � �� is�empty �s���� �stack�length �pop �s� � � stack�length �s� �

�Satellite functions are ones that are in the ground�zero data base of the prover�

�� CHAPTER �� THE PARSING SKELETON

	���� Grammar

The traditional de�nition for a grammar G ! �N� T� P� S� is a quadruple consisting of a set
N of nonterminal and a set T of terminal symbols with N � T ! fg� a set of productions P
which map elements of N to sequences of symbols from N � T � and an axiom symbol S� One
major di�erence between the traditionally de�ned grammar and the one that turned out to be
useful in the veri�cation has to do with the de�nition of the axiom�

Normally� the axiom S is the symbol from the left hand side for a speci�c production that
can be called the axiomatic production� But what is necessary for the proof of the generation
of a right derivation is the knowledge of which production is the axiomatic production� That is
the �rst production used in a derivation or the last production that is reduced� and not which
symbol was expanded or reduced to�

In order to have just one production labelled with the axiom symbol� a traditional grammar
must be augmented before proceeding with parsing table generation� Augmentation is the
process of introducing an explicit unique axiom production into the grammar which uses a
fresh non�terminal on the left hand side and the non�augmented axiom symbol followed by a
fresh terminal denoting the end of the text on the right hand side� for example S� �S a�

An augmentation step can easily be avoided by labelling each production in the grammar
�which must be done anyway in order to produce a parse rule� and giving the axiomatic
production label as the axiom A in a quadruple G ! �N� T� P� A�� Since productions are often
numbered� this is usually the production
�

The signatures for the grammar functions that will be used elsewhere are�

vocabulary � Grammar
� fV ocabg
prod�nr � fProdg 	 Label
� Prod
�nd�label � N 	 V ocab� 	 fProdg
� Label
is�wf�grammar � Grammar
� B

The grammar constructor and destructor functions for the quadruple will be obtained by
using a shell�

Event� Add the shell mk�grammar � with bottom object function symbol empty�grammar �
with recognizer function symbol is�grammar � and 	 accessors� sel�nonterminals � with type
restriction �none�of� and default value zero� sel�terminals � with type restriction �none�of� and
default value zero� sel�productions � with type restriction �none�of� and default value zero�
sel�axiom� with type restriction �none�of� and default value zero�

The function vocab constructs the vocabulary N � T of the grammar�

Definition�
vocab �grammar� ! �sel�nonterminals �grammar� � sel�terminals �grammar��

Since it will be necessary to access the components of a production and they should not
open up so that the proof scripts remain somewhat readable� a shell will also be used for
representing productions�

Event� Add the shell mk�prod � with bottom object function symbol empty�prod � with recog�
nizer function symbol is�production� and � accessors� sel�label � with type restriction �one�of
numberp� and default value zero� sel�lhs � with type restriction �none�of� and default value zero�
sel�rhs � with type restriction �none�of� and default value zero�

The function prod�nr is used in the parsing function for looking up the production asso�
ciated with a label in a list of productions�

���� DATA TYPES ��

Definition�
prod�nr �prods � label�
! if prods � nil then nil

elseif sel�label �car �prods�� ! label then car �prods�
else prod�nr �cdr �prods�� label� endif

The inverse function� �nding the label for a speci�c left and right hand side� is given in the
function find�label�

Definition�
�nd�label �lhs rhs � prods�
! if prods � nil then �no�such�label

elseif �lhs ! sel�lhs �car �prods��� � �rhs ! sel�rhs �car �prods�� �
then sel�label �car �prods��
else �nd�label �lhs � rhs � cdr �prods�� endif�

If a parsing table is to be generated� there must exist two metasymbols that are not already
members of the set of vocabulary symbols that can be used to denote the end of �le and the
�dot� that is used to construct the items� These can be represented here as nullary functions
that return the representations of these symbols� They are included here as they must be part
of the predicate stating that the vocabulary does not include either of them�

Definition� end�of�file ! �ef

Definition� dot ! �dot

The well�formedness of a grammar is of vital importance in the proof of many theorems� as
they do not hold for general quadruples but only those which have speci�c grammar properties�
A grammar is well formed if and only if it has the following properties�

� the grammar has no unused productions�

� each production has a unique label�

� the axiom is a label from the productions used�

� the terminals and the nonterminals are disjunct�

� the metasymbols used in constructing a parsing table are not members of the vocabulary�

� and the set of tokens used in the productions is a subset of �or equal to� the vocabulary�

A number of auxiliary functions must be de�ned for the construction of the conjuncts in
the well�formedness predicate� These derive the set of all left hand sides� the set of all right
hand side symbols� and the set of productions without the axiomatic production� The latter is
needed for determining that there are no unused productions in P �

An unused production will be one for which the left hand side symbol does not appear in
any right hand side� Since the left hand sides will include the start symbol from the axiomatic
production� which should not appear on any right hand side� the axiom production is removed
from the production set to be checked�

Definition�
no�unused�productions �prods � axiom�
! left�hand�sides �all�but�axiom �prods � axiom� � � right�hand�sides �prods�

�	 CHAPTER �� THE PARSING SKELETON

The function labels creates the set of all the labels used� If any are repeated they will
be subsumed in the set� and thus the cardinality of the set of labels would be less than the
cardinality of the set of productions� This is the predicate that checks the well�formedness of
a grammar�

Definition�
is�wf�grammar �grammar�
! let prods be sel�productions �grammar��

nonts be sel�nonterminals �grammar��
terms be sel�terminals �grammar��
axiom be sel�axiom �grammar�

in
let vocab be nonts � terms �

labs be labels �prods�
in
is�grammar �grammar�
� no�unused�productions �prods � axiom�
� �card �labs� ! length �prods��
� �axiom � labs�
� �intersection �nonts � terms� ! nil�
� �end�of�file �� vocab�
� �dot �� vocab�
� right�hand�sides �prods� � vocab endlet endlet

It is advisable to ascertain that the result of applying this function to any grammar used
returns T when used in �R�LOOP��

	���� Set Theory

Quite a bit of elementary set theory is necessary for the formulation of parsing theorems�
NQTHM just has a rudimentary sense of sets � they are implemented as lists� and the ground�
zero state of the prover provides a member and a union operator� which are de�ned as operations
on lists� The new version of the prover� NQTHM������ contains a number of libraries� partic�
ularly for bags� i�e� multi�sets� It is not necessary to have a complete theory of sets� however�
for the proofs� Indeed� having lemmata in the active data base that are not needed can be a
major source of interference in the conduction of the proof�

The �rst function� subsetp� is supposed to be a subset recognizer� A close inspection of
the function� however� will show that it is a weak cousin of a subset recognizer� It should
really be called something like subbagp� as it just checks if all elements of the list a are also
elements of the list b� If a is not a list �i�e� a literal atom�� then it is considered to be another
representation for the empty set� normally represented as just nil�

Definition�
subsetp �a� b� ! if a � nil then t else �car �a� � b� � subsetp �cdr �a�� b� endif

A �real� set is one which is either a representation for the empty set or a list in which
the head is not a member of the tail of the list� i�e� there are no duplicate members� It would
introduce too much complexity into the proof to demand that everything be a set � and it is
in fact not necessary� as many of the proofs can be adequately proved on the basis of bags
and lists� The fact that a list has no duplicate elements is often not necessary� But for the
occasions when it necessary to have a duplication free list� the function setp can be used�

���� DATA TYPES ��

Definition�
setp �l� ! if � listp �l� then t else �car �l� �� cdr �l�� � setp �cdr �l�� endif

The cardinality of a set is just the length of the list representing the set� The function
intersection returns a list of elements that occur in both lists� If an element is present more
than once in both lists� there will also be multiple elements in the intersection� If a list must
be made into a set� the function mk�unique�set can be used to force removal of duplicates�

Definition�
card �l�
! if listp �l� then � " card �cdr �l��

else � endif

Definition�
intersection �x � y�
! if listp �x�

then if car �x� � y then cons �car �x�� intersection �cdr �x�� y� �
else intersection �cdr �x�� y� endif

else nil endif

Definition�
mk�unique�set �set�
! if set � nil then nil

else car �set� � mk�unique�set �cdr �set�� endif

	���� Lists

In addition to the basic list functions and theorems given in the initial or ground�zero data
base� a number of other functions and predicates are needed� as well as a number of theorems
about the interactions between a number of often used functions� The length of a list is often
needed for a computation or for a termination argument�

Definition�
length �l� ! if � listp �l� then � else � " length �cdr �l�� endif

A few lemmata about empty lists and the interaction of length with cons are useful�

� The lemmata equal�length�� and length�nlistp about the length of the empty list
being zero�

� the lemmata length�cons demonstrates the interactions of length and cons�

� and the lemmata lessp�length�cons and lessp�length�cdr are variations of the above
lemmata needed for the introduction of some complicated de�nitions� for example� the
item�set�union de�nition�

There are a few theorems that state some fact about the last member of a list� so a function
is needed to determine that member�

Definition�
last �x�
! if x � nil then x

elseif cdr �x� � nil then x
else last �cdr �x�� endif

�� CHAPTER �� THE PARSING SKELETON

Lists in the logic� while very similar to Lisp lists� have one major di�erence � nil is not a
list� it is a literal atom� In Lisp nil actually has two types and this is impossible in the logic�
In order to specify proper lists� that is either nil or a cons list with nil as the last cdr� a
recognizer plistp and the constructor plist are needed to make a proper list out of any list�

Definition�
plist �l�
! if � listp �l� then nil

else cons �car �l�� plist �cdr �l��� endif

Definition�
plistp �l�
! if � listp �l� then l ! nil

else plistp �cdr �l�� endif

Quite a number of theorems must be proven about plistp� as the most interesting theorems
only hold for input that is a proper list� It will often be necessary to prove that new functions
have proper lists as their result� as this cannot automatically be discerned by the prover � it
only knows that the result is either a list or a literal atom�

Theorem� plistp�nlistp
�l � nil� � �plistp �l� ! �l ! nil��

Theorem� equal�plist
plistp �l� � �plist �l� ! l�

Theorem� plistp�cons
plistp �cons �a� l�� ! plistp �l�

The prover knows very few facts about append� so some rewrite rules are needed�

Theorem� plistp�append
plistp �append �a� b�� ! plistp �b�

Theorem� append�left�id
�� listp �a�� � �append �a� b� ! b�

Theorem� append�nil
append �a� nil� ! plist �a�

Theorem� append�append
append �append �a� b�� c� ! append �a� append �b� c��

Tables are kept in association lists� and the predicate alistp determines if the parameter
is such a list� domain returns all of the values in the domain of an association list and value

looks up the value of a particular domain element�

Definition�
alistp �x�
! if listp �x� then listp �car �x�� � alistp �cdr �x��

else x ! nil endif

���� DATA TYPES ��

Definition�
domain �map�
! if listp �map�

then if listp �car �map�� then cons �car �car �map��� domain �cdr �map���
else domain �cdr �map�� endif

else nil endif

Definition�
value �x � map�
! if listp �map�

then if listp �car �map�� � �x ! caar �map�� then cdar �map�
else value �x � cdr �map�� endif

else � endif

In di�erent predicates one must be sure that some list ��string�� only contains elements
that are the member of some vocabulary� That is checked by the following function�

Definition�
is�string�in �string � vocab�
! if string � nil then t

else �car �string� � vocab�
� is�string�in �cdr �string�� vocab� endif

	���	 Trees

The parser will be constructing a parse tree� so a basic data type� tree� is needed�

De
nition
 A tree is an ordered acyclical directed graph in which exactly one node �the
root� has in�degree of � and the rest of the nodes have in�degree of
� A node may have any
out�degree �
� Nodes with out�degree !
 are referred to as leaves�

A tree can be seen as a data type consisting of two components� a root component and
a branches component� The branches component is a sequence of further trees� If any of the
trees consist only of a root� then it is a leaf� For modeling sequences the ordered pair shell
cons can be used� The function car accesses the head of the list� the function cdr accesses
the tail of the list� The empty sequence can be modeled by the literal atom nil� A shell is
useful for constructing a tree for which there is no type restriction on the node component�

Event� Add the shell mk�tree� with bottom object function symbol emptytree� with recognizer
function symbol is�tree� and � accessors� sel�root � with type restriction �none�of� and default
value zero� sel�branches � with type restriction �none�of� and default value zero�

Functions are needed for collecting the nodes or for collecting the leaves of a forest of trees�
They will be needed for stating and proving some invariants of parsing� The leaf collector
needs to determine the frontier of a single tree� and predicates are needed which indicate if a
node is a leaf or if one tree is a subtree of another�

is�leaf � Tree
� B

is�subtree � Tree 	 Tree
� B
frontier � Tree
� V ocab�

leaves � Tree�
� V ocab�

�
 CHAPTER �� THE PARSING SKELETON

roots � Tree�
� V ocab�

node�ct � Tree
� N

get�prods � Tree 	 fProdg
� fProdg
nodes � Tree� 	 fProdg
� fProdg

A tree is called a leaf if there are no branches�

Definition� is�leaf �tree� ! �is�tree �tree� � �sel�branches �tree� ! nil��

A subtree of a tree is any node in the tree complete with all descendents� Since the logic
does not permit mutually recursive functions� both bodies of the functions must be combined
into one and the decision which body is to be executed depends on the value of an additional
parameter� the tag� One should probably take the union of the parameters of both functions�
i�e� a tree for the tree case and branches for the branches case� However� since both are never
needed at the same time and it simpli�es the proof� just one parameter is used for both�

Definition�
is�subtree �tag � sub� tree�
! if tag ! �tree

then if �emptytree ! tree� � �� is�tree �tree�� then f

elseif sub ! tree then t
else is�subtree ��branches� sub� sel�branches �tree�� endif

elseif tree � nil then f
else is�subtree ��tree� sub� car �tree��

� is�subtree ��branches� sub� cdr �tree�� endif

A small theorem can be proven to strengthen the conviction that this function is implemen�
ted correctly� A tree is a subtree of itself�

Theorem� subtree�re�exive
�is�tree �tree� � �tree �! emptytree�� � is�subtree ��tree� tree� tree�

An interesting subtlety was pointed out by the prover� It turned out that it was necessary
to di�erentiate between leaves in general and the leaves of a particular tree� The prover had
trouble proving theorems about the frontier for the case in which the nodes themselves were
trees �since a node can be of any type�� Of course� in such a case the tree would indeed have
leaves �as components of the node� which were not tree leaves and thus not members of the
frontier# So the de�nition of leaves in a tree must be strengthened to be a leaf and to be a
subtree of the tree in question�

Definition�
is�leaf�in �node� tree� ! �is�leaf �node� � is�subtree ��tree� node� tree��

The frontier is de�ned by Aho and Ullman �AU��� p� �	
� as a string obtained by concat�
enating the labels of the leaves in order from the left� The frontier implementation is similar
to the is�subtree predicate in that a tag is used to control the recursion� When something
has been reached that is a leaf when the tree tag is active� the label in the node is selected
and returned as a singleton list� When the branch tag is active� the frontier list for each of the
trees in the branch are appended in order from left to right�

���� DATA TYPES ��

Definition�
frontier �tag � item�
! if tag ! �tree

then if �� is�tree �item�� � �item ! emptytree� then nil

elseif is�leaf �item� then list �sel�root �item��
else frontier ��branches� sel�branches �item�� endif

elseif item � nil then nil
else append �frontier ��tree� car �item���

frontier ��branches� cdr �item��� endif

The frontier function is not a trivial one� so theorems about properties of the function result
should be proven� One theorem is that all leaves in a tree are members of the frontier�

Theorem� all�leaves�in�frontier
�is�leaf�in �subtree� tree� � is�tree �tree��
� �sel�root �subtree� � frontier ��tree� tree��

For this proof three lemmata are needed�

� The �rst is a base case that shows the frontier of a leaf is just the singleton list containing
the leaf label�

Theorem� leaf�frontier
frontier ��tree� mk�tree �v � nil�� ! list �v�

� The second is a theorem stating the relationship between the functions member and
append� Since the theorem uses the function member and the frontier function uses
append� one expects to have to demonstrate the exact relationship� and indeed� the proof
will not go through without this�

Theorem� member�append
�x � append �a� b�� ! ��x � a� � �x � b��

� The third is the key lemma� which demonstrates that if a leaf is a subtree of a tree� then
the label is a member of the frontier and vice versa�

Theorem� is�subtree�leaf�is�member�frontier
is�subtree �tag � mk�tree �z � nil�� tree� ! �z � frontier �tag � tree��

One might now expect to attempt to prove that no labels of inner nodes are contained in
the frontier� This is the case� in the speci�c form of parse trees� in which non�terminal symbols
of the context�free grammar label the inner nodes and tokens representing the terminal symbols
decorate the leaves� But in the general tree case this is not a theorem� as noted above � it is
possible for the label contained in some inner node to happen to be the same as the label for
some leaf� This case was noted by the prover during an attempt to prove such a fact� The
theorem is just that all symbols in the frontier have a corresponding leaf in the tree�

Theorem� only�leaves�in�frontier
��x � frontier ��tree� tree�� � is�tree �tree��
� is�leaf�in �mk�tree �x � nil�� tree�

�

 CHAPTER �� THE PARSING SKELETON

These two theorems are not yet su�cient to guarantee that an implementation of frontier
is correct � a silly implementation that collects the leaves backwards would also have the above
properties� So it must be shown that the tokens are collected in order� Either a preorder or a
postorder printing of the nodes can be used� Since there are no inner nodes in the frontier� it
is irrelevant where they are placed with respect to the leaves� It can be shown that the frontier
is a sub�sequence of the ordered printing of the nodes� The parameters x and y are in the
sub�sequence relation when all the elements of x are found in y in the given order� That is� y
may have arbitrary elements inserted at any position�

This is the de�nition of the preorder print� �rst the node label is printed and then all of
the branches are printed� Since the function cdrs down the list� the branches they are being
printed from the left�

Definition�
preorder�print �tag � tree�
! if tag ! �tree

then if �� is�tree �tree�� � �tree ! emptytree� then nil
else append �list �sel�root �tree� ��

preorder�print ��branches� sel�branches �tree�� � endif
elseif tree � nil then nil

else append �preorder�print ��tree� car �tree���
preorder�print ��branches� cdr �tree��� endif

This is the de�nition of subsequence� It has a tricky induction structure� sometimes cdring
down both parameters and sometimes only down the second one�

Definition�
subseq �x � y�
! if x � nil then t

elseif y � nil then f
else ��car �x� ! car �y�� � subseq �cdr �x�� cdr �y�� �

� ��car �x� �! car �y�� � subseq �x � cdr �y�� � endif

This lemma� due to Matt Kaufmann� is the key to the other proofs� I could see that I needed
subseq�cons�	 to prove subseq�cons�� and vice versa� but it was Matt�s observation� that
the double implication in subseq�cons�lemma would be helpful in proving both� that helped
this go through�

Theorem� subseq�cons�lemma
�subseq �x � y� � subseq �cdr �x�� y�� � �subseq �x � cdr �y�� � subseq �x � y��

As always� it must be shown how newly introduced functions interact with functions already
existing in the theory� Four lemmata are needed about combinations of subseq� cons and
append�

Theorem� subseq�cons��
subseq �cons �a� x�� y� � subseq �x � y�

Theorem� subseq�cons��
subseq �x � y� � subseq �x � cons �b� y��

Theorem� subseq�cons�append
subseq �cons �x � z �� u� � subseq �z � append �v � u��

���� DATA TYPES �
�

Theorem� subseq�append�append
�subseq �b� u� � subseq �a� y�� � subseq �append �a� b�� append �y � u��

This is the ordering theorem� that the frontier of a tree is a sub�sequence of the preorder
printing of that tree�

Theorem� subseq�frontier�preorder
subseq �frontier �tag � tree�� preorder�print �tag� tree��

The leaves of a list of trees consists of a list of the frontiers of each of the trees in list
order� Other predicates dealing with this function can be found in section ������ where the
invariant proof is discussed�

Definition�
leaves �trees�
! if trees � nil then nil

else append �frontier ��tree� car �trees��� leaves �cdr �trees�� � endif

The roots function� which will be used in retrieving the grammar productions from the
tree� takes a list of trees and constructs a list of the roots of each tree in order� to be used as
the right hand side of a production�

Definition�
roots �trees�
! if trees � nil then nil

elseif is�tree �car �trees��
then append �list �sel�root �car �trees���� roots �cdr �trees���
else nil endif

The function node�ct returns the number of inner nodes in a tree�

Definition�
node�ct �tree�
! if is�leaf �tree� � �� is�tree �tree� � then �

else � " for i in sel�branches �tree�
sum node�ct �i� endfor endif

This is the number of inner nodes for all the trees on the tree stack� This number should
be the same as the number of productions that have been recognized up to this point�

Definition�
node�count � tree�stack�
! if is�empty �tree�stack� � �� is�stack �tree�stack� � then �

else node�ct �top �tree�stack�� " node�count �pop �tree�stack� � endif

The function get�prods retrieves an unlabelled production for every inner node in a tree�
It will be needed for an invariant proof in section ����	� This� too� is a mutually recursive
function and uses a tag to select which function body is needed�

Definition�
get�prods ��ag � param�
! if �ag ! �tree

�
� CHAPTER �� THE PARSING SKELETON

then if is�leaf �param�
� �� is�tree �param��
� �param ! emptytree � then nil

else mk�prod �nil� sel�root �param��roots �sel�branches �param�� �
� get�prods ��branches� sel�branches �param�� endif

elseif �ag ! �sequence

then if param � nil then nil
else get�prods ��tree� car �param��

� get�prods ��sequence� cdr �param�� endif
else nil endif

The function nodes is a rather mis�named function that collects the set of unlabelled pro�
ductions for all trees in a stack of trees�

Definition�
nodes �tree�stack � terms�
! if is�empty �tree�stack� � �� is�stack �tree�stack� � then nil

else get�prods ��tree� top �tree�stack��
� nodes �pop �tree�stack�� terms� endif

	���� Con�gurations

All data structures used by the parser will be collected into a con�guration� A con�guration
is a seven�tuple C ! �input� states� symbols� trees� parse� deriv� error� with

input� containing the input symbols that have not yet been consumed�

states� a stack which keeps track of the states seen�

symbols� a stack holding the symbols which have been shifted or added through reductions�

trees� a stack containing the forest of partial parse trees�

parse� a list of the production labels used to produce the parse�

deriv� the derivation constructed so far� and

error� an error �ag�

Keeping track of all the components in the con�guration might seem excessively ine�cient�
But they are necessary to prove the invariants of parsing correct� When the proof has been
completed� an equivalent parser can easily be constructed that ignores unnecessary compon�
ents� This parser will work much faster and is readily proven to be functionally equivalent to
the �rst one�

The parser begins with an initial con�guration and a parsing table and steps through the
parsing actions until either the acceptance predicate or the error predicate return T� There is
not an explicit accept action as discussed in section ������ The acceptance predicate is true if
the last label in the parse string is the label of the axiomatic production� the input has been
consumed and the symbol stack is empty� If a parsing table should request reduction by the
axiom when the other conditions do not hold� then the table is in error and the parse will be
�agged erroneous in the next step� The error predicate returns T upon encountering an error
action in the action table� when an attempt is made to shift when the input has been exhausted�

���� DATA TYPES �
�

or when a reduction is to take place and there are not enough trees or symbols to complete the
reduction� The following is a shell de�nition for such a con�guration��

Event� Add the shell mk�con�guration� with bottom object function symbol unde�ned�
con�guration� with recognizer function symbol is�con�guration� and � accessors� sel�input �
with type restriction �none�of� and default value zero� sel�states � with type restriction �none�
of� and default value zero� sel�symbols � with type restriction �none�of� and default value zero�
sel�trees � with type restriction �none�of� and default value zero� sel�parse� with type restriction
�none�of� and default value zero� sel�deriv � with type restriction �none�of� and default value
zero� sel�error � with type restriction �none�of� and default value zero�

An initial con�guration for parsing would be

C ! �input� push �start�state� emptystack�� emptystack� emptystack� nil� nil� F�

The starting state is
 by convention� but should properly be a parameter to an outer
parsing function along with the parsing tables�

	���� Derivations

The notion of derivation is essential to understanding why parsing works� Normally� a deriv�
ation is not explicitly constructed during parsing� If it should ever be necessary to have the
derivation� it can be constructed from the goal with the parse string� However� in order to
conduct proofs on parsing� it is necessary to explicitly construct the derivation� If the parsing
algorithm terminates� there exists a derivation starting with the axiomatic production resulting
in the input string� Depending on the parsing algorithm used� it can also be shown that a right
derivation has been constructed�

The de�nition given in �AU��� for derivations is used in many other publications� The most
general form is for rewriting systems� and a grammar is a special case of a rewriting system�

De
nition � �Rewriting System� A rewriting system� sometimes also referred to as a
Semi�Thue system� is an ordered pair RS � �V� F� where V is an alphabet and F is a ��
nite set of ordered pairs of words from W�V�� The elements �P�Q� in the set of replacement
rules F are often written as P � Q or P

� Q�

De
nition � �Directly Derives� If 	
� is a string over V� and
 �� is a production in
F� then one can say that 	�� directly derives from 	
�� written 	
� !�	���

From the binary relation !� the re�exive� transitive closure !�� can be de�ned to describe
a �nite derivation�

De
nition 	 �Derivation� Aho�Ullman� A word Q derives from a word P� denoted P !��

Q� when there exists a �nite sequence of words P�� P�� � � � � Pk� k � � such that P � P�� Q �

Pk� and Pi
lj

!� Pi�� for � � i � k� � � j � j F j� The sequence P�� P�� � � �� Pk is called the
derivation of Q from P� and the sequence l�� � � � � lk�� is known as the rule sequence or parse
string for the derivation� The Pi are also referred to as sentential forms�

�I had used constraints here in a �rst implementation to specify that the states� symbols and trees were
of
type� stack� This led to a lot of trouble in proving the invariants� For example� not even an obvious
identity function �Conf � mk�con�guration � ��� all the selectors applied to conf ����� seemed to hold� My
solution was to remove the type restrictions� and the proofs went through with the type restrictions added
in theorem hypotheses as necessary� While writing this chapter I discovered that the problem was not with
the type restrictions� but with a missing �if �not �is�configuration conf�� �error�conf� ������ in the
function parsing�step� I considered redoing the proofs� but since this could have an e�ect on most of the
invariant proofs� I left it alone�

�
	 CHAPTER �� THE PARSING SKELETON

This de�nition� although quite concise mathematically� is a di�cult concept to express in the
quanti�er�free Boyer�Moore logic� Mayer �May�
� de�nes derivations in rewriting systems quite
di�erently� His de�nition and the notation used are constructive� and thus quite amenable for
use in mechanized veri�cation with NQTHM� Mayer begins with the de�nition of a derivation
step and then de�nes a derivation to be a sequence of derivation steps that interlock� A
derivation step expands a sentential form at a speci�c point which matches the left�hand side
of a production� replacing it with the right�hand side� This is illustrated in Figure ����

A ��! 	

	

Al

l

r

r�
�
�
��

�
�
�
��

Figure ���� A Derivation Step

De
nition �� �Derivation� Mayer� A derivation step in a grammar G � �N� T� P� S� is
a ��tuple � � �l� A � 	� r� such that l� r � �N � T��� A � 	 � P� The sentential forms P
and Q from the derivation step above are given constructively with the use of two functions�
Source and Target�

Source��� ! lAr

Target��� ! l	r

If Source��� � Target ��� the derivation step is said to be an identical step�

A �nite� non�empty sequence ' � f�ig
n of derivation steps such that Source��i��� � Target

��i� for � � i � n is called a derivation from Source ���� to Target ��n�� If Source ���� �
S the sequence is just called the derivation of Target ��n�� The length of a derivation is the
number of non�identical derivation steps in the derivation�

Example�

The following grammar Gexpression is a grammar for recognizing expressions that can be par�
enthesized� but do not have to be� and which produces a parse tree that faithfully represents
the priority of a � operation before a � operation�

Gexpression ! �fS�E�T�Fg�
fa�"�$����g�
f
 � S � E�
� � E � E"T� � � E � T� � � T � T$F�
	 � T � F� � � F � �E�� � � F � ag�

�

The following table gives an example of the derivation according to Mayer of w ! �a�a�a��
Since the Source���� ! S and the Target��	� ! w� it can be seen that w is derivable from
S� S !��w� Since all right parts are sequences of symbols from T� this derivation is a right
derivation�

���� DATA TYPES �
�

�i left Prod (right

�� � S �E
 �

�� � E �E"T � �

�� E" T �T$F � �

�� E"T$ F �a � �

�� E" T �F 	 $a

�� E" F �a � $a

�� � E �T � "a$a

�� � T �F 	 "a$a

�	 � F �a � "a$a

Mayer�s derivation de�nition is more suited to veri�cation with NQTHM for a number of
reasons� The �rst is that both existential quanti�cations that are implicit in the Aho�Ullman
de�nition �that is� the existence of a suitable non�terminal in the source word and of a suitable
production� are explicitly stated in the de�nition� The sentential forms source and target are
also easy to construct from the derivation steps�

In addition� it is easy to determine if a left� or right�derivation was constructed� If l � T � or
r � T � for all derivation steps in a derivation� then the derivation is a left� or a right�derivation�
The de�nition also provides a good basis for a mechanical proof � in that if the Source��� is a
sentential form� then the Target ��� is also a sentential form� and thus all targets derived from
the axiomatic production are by induction also sentential forms�

A shell without restrictions is used to represent a derivation step�

Event� Add the shell mk�derivation�step� with bottom object function symbol unde�ned�
ds � with recognizer function symbol is�derivation�step� and � accessors� sel�left�derivation�
step� with type restriction �none�of� and default value zero� sel�prod�derivation�step� with type
restriction �none�of� and default value zero� sel�right�derivation�step� with type restriction
�none�of� and default value zero�

The following functions are used to extract information from a derivation or a derivation
step�

pick�token�names � Token�
� V ocab�

step�source � DerivationStep
� V ocab�

step�target � DerivationStep
� V ocab�

source � Derivation
� V ocab�

target � Derivation
� V ocab�

deriv�rule � Derivation
� DerivationRule
productions � Derivation
� fProdg
is�derivation�in � Derivation 	 Grammar
� B

is�right�derivation�in � Derivation 	 Grammar
� B

For all elements in the sequence� the function pick�token�names picks out the token names
if the current element is a token and leaves the element unchanged if it is not�

Definition�
pick�token�names �l�
! if l � nil then nil

elseif tokenp �car �l��
then cons �token�name �car �l��� pick�token�names �cdr �l���
else cons �car �l�� pick�token�names �cdr �l��� endif

�
� CHAPTER �� THE PARSING SKELETON

The function step�source extracts the source of a derivation step� and step�target ex�
tracts the target�

Definition�
step�source �ds�
! append �pick�token�names �sel�left�derivation�step �ds� ��

append �sel�lhs �sel�prod�derivation�step �ds���
pick�token�names �sel�right�derivation�step �ds� ���

Definition�
step�target �ds�
! append �pick�token�names �sel�left�derivation�step �ds� ��

append �sel�rhs �sel�prod�derivation�step �ds���
pick�token�names �sel�right�derivation�step �ds� ���

The functions source and target do the same for a derivation� The source of a derivation
is the source of the �rst step� the target of the derivation is the target of the last step�

Definition�
source �derivation�
! if derivation � nil then nil

else step�source �car �derivation�� endif

Definition�
target �derivation�
! if derivation � nil then nil

else step�target �last �derivation� � endif

The function deriv�rule picks out the derivation rule of a derivation� corresponding to
the parse string� It is a list of the labels of the productions used in constructing the derivation�
The function productions collects up all the productions used in the derivation into a set� to
determine the di�erent productions used�

Definition�
deriv�rule �derivation�
! if derivation � nil then nil

else append �sel�label �sel�prod�derivation�step �car �derivation�� ��
deriv�rule �cdr �derivation�� � endif

Definition�
productions �derivation�
! if derivation � nil then nil

else list �sel�prod�derivation�step �car �derivation���
� productions �cdr �derivation�� endif

A well�formed derivation with respect to a grammar consists only of productions from the
grammar� constructs only strings that are in the vocabulary of the grammar� and has every
derivation step in lockstep� The function lockstep determines if� for each derivation step in
a derivation� the target sentence is equal to the source sentence of the next derivation step�
This ensures that each step is well connected to the previous and following steps� The function
all�in�vocab checks that all of the elements of the step source are members of the vocabulary�

���� DATA TYPES �
�

Definition�
lockstep �derivation�
! if �derivation � nil� � �cdr �derivation� � nil� then t

else �step�source �cadr �derivation�� ! step�target �car �derivation�� indexstep�target�
� lockstep �cdr �derivation�� endif

Definition�
all�in�vocab �derivation� v�
! if derivation � nil then t

else is�string�in �pick�token�names �step�source �car �derivation���� v�
� all�in�vocab �cdr �derivation�� v� endif

Definition�
is�derivation�in �derivation� grammar�
! �subsetp �productions �derivation� � sel�productions �grammar��

� all�in�vocab �derivation� append �vocab �grammar�� list �end�of�file���
� lockstep �derivation��

A derivation is a right derivation when each right part is a terminal string� The predicate
all�rights�terminal checks this property and is used in is�right�derivation�in�

Definition�
all�rights�terminal �derivation� terminals�
! if derivation � nil then t

else is�string�in �pick�token�names �sel�right�derivation�step �car �derivation���� terminals�
� all�rights�terminal �cdr �derivation�� terminals� endif

Definition�
is�right�derivation�in �derivation� grammar�
! �is�derivation�in �derivation� grammar�

� all�rights�terminal �derivation�
append �sel�terminals �grammar�� list �end�of�file����

	���� Sentential Forms

The source and target of a derivation step in a derivation that begins with a step using the
axiomatic production are said to be sentential forms� That is� they can be derived from the
goal of a grammar and represent a cut through the derivation tree� Right� and left�sentential
forms satisfy special restrictions on their right or left part� For right sentential forms� each
previous step of the derivation proceeded from the rightmost non�terminal� that is� the right
part is a terminal string� The left sentential form proceeded analogously from the leftmost
non�terminal�

Using the Aho�Ullman de�nition of derivation� a sentential form is any string that is part
of the �nite derivation sequence� With the Mayer de�nition� a sentential form is any source or
target in a step which proceeds from the axiomaic production� But to determine if a particular
string is a sentential form with respect to a grammar� one must �nd a derivation from the
axiomatic production to this form � that is� the parsing process must be used to determine if
such a derivation exists# Once the derivation has been found it is trivial to show that all the
intermediate steps are indeed sentential forms�

So the question arises if it is at all feasable to mechanically prove anything about sentential
forms� A predicate stating that something is a sentential form would need to either �nd a

�

 CHAPTER �� THE PARSING SKELETON

derivation or show that none can exist� A number of attempts were made to formulate a
predicate stating that the parsing process preserves the �sentential�form�ness� of a string�
but all were very unwieldly� Perhaps this would be a good area for using the existential
quanti�cation extentions to NQTHM�

	���� The Parsing Tables

The construction of the tables will be discussed in depth in Chapter ���� This section just
discusses the lookup functions for the parsing tables� which are needed for driving the skeleton
parser� The signature for the table construction function is speci�ed here for clarity�

There are two tables� an action table and a goto table� The action table looks up the current
state with the current element of the input �a terminal symbol� and determines which action
� shift� reduce� or error � is to be taken� The goto table looks up the symbol on the left hand
side of the reduce production with the current state to determine the next state to go to�

action�lookup � T 	 State 	 ActionTab
� Action
goto�lookup � N 	 State 	 GotoTab
� State
construct�tables � Grammar
� Tables

The tables will always be passed together as parameters� Once each has been constructed�
they are consed together and can be selected out as needed�

Definition� mk�tables �actiontab� gototab� ! cons �actiontab� gototab�

Definition� sel�actiontab �tables� ! car �tables�

Definition� sel�gototab �tables� ! cdr �tables�

Actions can either consist of a state �for the shift case�� a label and a left hand side and a
size �for the reduce case�� or just an error literal� It was decided to implement them �they are
in e�ect a union type� as tagged lists� That means that the name of each action is the �rst
element of the list in quoted form� Each action has the same number of elements� but only
some of the elements are valid for each action� One does not need to analyse the structure of
the action to determine which sort it is� The �rst element determines which other elements are
valid�� An example of each action is given below�

��shift 	� � � ��

��reduce � � �E ��

��error � � � ��

The selector functions for the components of the actions must have unique names� so the
name of the action is appended to the function names �sel�lhs was already used in the
production shell� for example��

Event� Add the shell mk�action� with bottom object function symbol empty�action� with
recognizer function symbol is�action� and � accessors� sel�action�tag � with type restriction
�none�of� and default value zero� sel�state�shift � with type restriction �one�of numberp� and
default value zero� sel�label�reduce� with type restriction �one�of numberp� and default value
zero� sel�lhs�reduce� with type restriction �none�of� and default value zero� sel�size�reduce� with
type restriction �one�of numberp� and default value zero�

�This method of implementing union types is discussed in more detail in �BWW����

���� THE PARSING FUNCTION �
�

Definition� mk�shift�action �state� ! mk�action ��shift� state� �� �� ��
Definition� mk�reduce�action �label � lhs � size� ! mk�action ��reduce� �� label � lhs � size�
Definition� mk�error�action ! mk�action ��error� �� �� �� ��

The functions action�lookup and goto�lookup look up the mapping values in their re�
spective tables�

Definition� mk�selector �state� symbol� ! list �state� symbol�

Definition�
action�lookup �terminal � state� actiontab�
! let key be mk�selector �state� terminal�

in cdr �assoc �key� actiontab�� endlet

Definition�
goto�lookup �lhs � state� gototab�
! let key be mk�selector �state� lhs�

in cdr �assoc �key� gototab�� endlet

��� The Parsing Function

The basic parsing step is de�ned as a con�gurationtransformation� Depending on the action
de�ned in the parsing tables for the state on the top of the state stack and the current input
symbol� either

� shift the current lookahead onto the symbol stack� determine the next state from the
parsing tables and push it onto the state stack� and push a tree consisting of a leaf
containing the symbol onto the tree stack�

� reduce using a production from the grammar by

� adding the label of the production to the end of the parse string�

� putting the next derivation step on the front of the derivation�

� removing n symbols from the symbol stack �n is the length of the right hand side
of the production to be reduced� if there are not enough symbols on the stack or if
the symbol stack does not correspond to the production�s right hand side� the error
�ag is set��

� pushing the symbol of the left hand side of the production onto the symbol stack�

� popping n states from the state stack�

� pushing the state determined by the control table onto the state stack�

� removing the top n elements of the tree stack� and

� pushing a new tree onto the tree stack consisting of a node labelled by the left hand
side of the production and branches with the roots of the trees removed

in the order given while the input remains unchanged�

� or set the error �ag�

��
 CHAPTER �� THE PARSING SKELETON

As described above� there is no explicit accept action in this de�nition of parsing� Rather
acceptance is a property of a con�guration� The axiom of the grammar is a production label�
not a symbol� If a reduction by the production with the label of the axiomatic production has
taken place� the input has been exhausted� and there are no extraneous symbols on the symbol
stack� then the con�guration is accepting� A con�guration is said to be in error when the error
�ag is set�

The function parsing�step carries out the above actions� As the parsing step is not
recursive� there is no termination problem� The non�recursive function reduce�trees was
introduced so that it was possible to prove invariance theorems about the e�ect that a speci�c
reduction has on the tree stack� Before the reduction is carried out� a check is made if there
are enough elements on the stack and if the right hand side matches the symbol stack �which
contains the roots of the tree stack� as stated in the conjecture roots in section ������� This
will reassure us that the grammar has called for the reduction by the proper production�

Definition�
reduce�trees �lhs � size� trees�
! if �stack�length �trees� � size�

� �� is�stack �trees��
� �size � �� then emptystack

else push �mk�tree �lhs � top�n �size� trees�� � pop�n �size� trees� � endif

Definition�
matches�stack �l � s�
! if � is�stack �s� then f

elseif is�empty �s� then l � nil

elseif l � nil then t
else �car �l� ! top �s�� � matches�stack �cdr �l�� pop �s�� endif

Definition�
parsing�step �conf � tables � grammar� !
let input be sel�input �conf ��

states be sel�states �conf � �
symbols be sel�symbols �conf � �
trees be sel�trees �conf � �
parse be sel�parse �conf � �
deriv be sel�deriv �conf � �
error be sel�error �conf � �
prods be sel�productions �grammar�

in
if input � nil

then mk�con�guration �input � states � symbols � trees � parse� deriv � t�
else let act be action�lookup �token�name �car �input��� top �states�� sel�actiontab �tables��

in

case on sel�action�tag �act��
case � error
then mk�con�guration �input � states � symbols � trees � parse� deriv � t�
case � shift
then let s be sel�state�shift �act�

in

mk�con�guration �cdr �input��

���� THE PARSING FUNCTION ���

push �s � states��
push �token�name �car �input��� symbols��
push �mk�tree �car �input�� nil�� trees��
parse� deriv � f� endlet

case � reduce
then let label be sel�label�reduce �act� �

lhs be car �sel�lhs�reduce �act���
size be sel�size�reduce �act�

in
let rhs be sel�rhs �prod�nr �label � prods��
in
if �stack�length �trees� � size�
� �� matches�stack �reverse �rhs�� symbols��
� �size � ��

then mk�con�guration �input � states � symbols � trees � parse� deriv � t�
else let goto be goto�lookup �lhs � top �pop�n �size� states��� sel�gototab �tables��

in

mk�con�guration �input �
push �goto� pop�n �size� states���
push �lhs � pop�n �size� symbols���
reduce�trees �lhs � size� trees��
append �parse� list �label���
append �list �mk�derivation�step

�from�bottom �pop�n �size� symbols���
mk�prod �label � lhs � top�n �size� symbols���
pick�token�names �input����
deriv��

f� endlet endif endlet endlet
otherwise mk�con�guration �input � states � symbols � trees � parse� deriv � t�
endcase endlet endif endlet

An accepting con�guration is one in which the input has been exhausted and the last
production label of the parse string is the axiom of the grammar�

Definition�
accept�is �conf � axiom�
! ��car �sel�input �conf �� ! mk�token �end�of�file� nil��

� �last �sel�parse �conf �� ! list �axiom���

The function error returns the error component of a con�guration�

Definition� error �conf � ! sel�error �conf �

The skeleton parser parse�it executes a parsing step until an error occurs or an accepting
con�guration is reached� This method of simulating a while statement permits invariants to be
stated that must hold from one parsing step to the next� The function takes a con�guration�
the parsing tables� the grammar� and a clock as parameters� The clock is needed� as NQTHM
could not be convinced that parsing terminates�

Definition�
parse�it �conf � tables � grammar � clock�

��� CHAPTER �� THE PARSING SKELETON

! if clock � � then conf
elseif error �conf � � accepting �conf � sel�axiom �grammar�� then conf
else parse�it �parsing�step �conf � tables � grammar�� tables � grammar � clock
 �� endif

The parser constructs the table from the grammar� and calls parse�it on an initial con�
�guration� The initial con�guration was given in Section ����� The input must be extended
to have an end�of��le marker token concatenated on the end� The length of the input times
twice the number of productions can be used as an upper bound for the clock� This is not the
least upper bound� but if the grammar is acyclic� this will su�ce� The result of parser is also
a con�guration� which can be examined for acceptance or from which interesting components
such as the derivation or the parse string can be selected for further use�

Definition�
parser �string � tables � grammar�
! parse�it �mk�con�guration �append �string �

list �mk�token �end�of�file� nil����
push ��� emptystack��
emptystack�
emptystack�
nil� nil� f��

tables �
grammar �
�length �string� � �� � length �sel�productions �grammar�� �

A parser� as noted above� has no obvious termination condition� There exist� for example�
in�nite derivations in a grammar if the grammar �and thus the parser� is cyclic� For example�
in the grammar GS ! � fSg� fag� fS !� SS� S !� a� S !��g� S�� every sentential form has
an in�nite number of derivations�

Mayer�May�
� p��
��	� discusses this problem at length by de�ning a non�cyclic �nite�state
push�down acceptor� That is� one with no in�nite reduction chains which do not change either
the length of the input or the depth of the stack� He then o�ers a construction method of
such an acceptor from a cyclic one by identifying the cycle starting points� These are the
con�gurations from which such in�nite cycles can start� Two new states are added to the
table� one is a �nal state and the other is not� If a �nal state was encountered just before the
in�nite chain begins� a transition to the new �nal state is added to the table from the current
cycle starting point� If not� a transition to the non��nal state is added�

Now transitions are added for all elements of the �nite alphabet from the new �nal state
to the non��nal state � if the input was exhausted just at the starting point for the cycle� then
the acceptor accepts� if not the string is not acceptable� From the non��nal state transitions
are added on each symbol in the alphabet back to itself so that the input is consumed in this
case and there is not an accepting con�guration since the stack is not empty�

Mayer proves the equivalence of these two classes of automata� and then o�ers a measure
for the parsing step� He concludes that the maximal number of con�gurations is

j w j � �b" �� � l " �

�Using NQTHM to do this with the methods described in Chapter � for the language PLR
 took around
� hours of CPU time ���� hours of real time� on a lightly loaded SPARC station with �� MB of memory�
This is an important reason for not using this function more often than absolutely necessary � it takes far too
long� Instead� the tables should be generated and stored� and then passed as parameters to parse�it with an
appropriate initial con�guration�

���� THE INVARIANTS OF PARSING ���

where b is the longest ��chain �and this must exist� or it is not a non�cyclic acceptor� and l is
the maximal depth of the stack� He assigns a characteristic number to each con�guration with
stack length lx and remaining input x�

lx" j x j � �b
 �� � l

and notes that this decreases on every step � either an input symbol is consumed or the stack
decreases� or one of a �nite number of ��steps is taken�

��� The Invariants of Parsing

The following predicates are invariants that must hold between consecutive parsing con�gura�
tions� in order for a parser skeleton to work correctly� They concern the following relationships�

Stack size The symbol and the tree stacks are always the same length and one element shorter
than the state stack�

Leaves The concatenation of the leaves of the tree stack� read from the bottom with the rest
of the input� remains constant�

Right sentential form The concatenation of the symbol stack read from the bottom with
the rest of the input is a right sentential form�

Number of reductions The number of non�leaf nodes in the tree stack is equal to the length
of the parse string which contains the reduction sequence�

Roots The roots of the reverse order of the forest on the tree stack is the same as the reverse
order of the symbol stack�

Nodes Each inner node in a tree on the tree stack represents a production from the grammar�

	���� Stack Size

The state stack is always one longer than the symbol stack or the tree stack since the initial
con�guration of the state stack consists of the initial state pushed onto the empty stack while
the others are just empty stacks� The tree stack and the symbol stack are always of equal
length�

stack�length �c�states� ! �stack�length �c�symbols� " �� �
stack�length �c�symbols� ! stack�length �c�trees�

This was� as expected� an easy invariant to prove� The shift case was provable without
further lemmata�

Theorem� inv�stack�size�shift
��next ! mk�con�guration �cdr �input��

push �s � states��
push �token�name �car �input��� symbols��
push �mk�tree �car �input�� nil�� trees��
parse� deriv � f��

� is�stack �symbols�

��	 CHAPTER �� THE PARSING SKELETON

� is�stack �states�
� is�stack �trees�
� ��stack�length �trees� ! stack�length �symbols��

� ��� " stack�length �symbols�� ! stack�length �states����
� ��stack�length �sel�trees �next�� ! stack�length �sel�symbols �next���

� ��� " stack�length � sel�symbols �next���
! stack�length �sel�states �next� ���

The reduction case needs to know how stack�length is a�ected by push and pop�n� quite
typical kinds of lemmata to prove�

Theorem� stack�length�push
stack�length �push �a� b� � ! �� " stack�length �b��

Theorem� stack�length�pop�n
�stack�length �a� �� size�
� �stack�length �pop�n �size� a�� ! �stack�length �a�
 size��

The hypotheses had to be expanded to include assertions that the stacks are indeed of stack
type and that size is not zero � as discussed above� in that case the invariant does not hold�

Theorem� inv�stack�size�reduce
��next ! mk�con�guration

�input �
push �goto� pop�n �size� states� ��
push �lhs � pop�n �size� symbols� ��
reduce�trees �lhs � size� trees� �
append �parse� list �label���
append �list �mk�derivation�step �from�bottom �pop�n �size� symbols���

mk�prod �label �lhs � top�n �size� symbols���
pick�token�names �input����

deriv��
f��

� is�stack �symbols�
� is�stack �states�
� is�stack �trees�
� �size �� ��
� �stack�length �trees� �� size�
� ��stack�length �trees� ! stack�length �symbols��

� ��� " stack�length �symbols�� ! stack�length �states����
� ��stack�length �sel�trees �next�� ! stack�length �sel�symbols �next���

� ��� " stack�length �sel�symbols �next���
! stack�length �sel�states �next����

The proof of the invariant generates �	 subgoals that are utterly incomprehensible� as all
of the let�forms are expanded and the worst terms are broken over ��
 lines of text# This is�
however� a strong point of the prover� The size of a term is no hindrance to proving it correct
if useful rewrite rules can be used�

Theorem� inv�stack�size
��next ! parsing�step �mk�con�guration �input � states � symbols � trees � parse� deriv � f��

���� THE INVARIANTS OF PARSING ���

tables �
grammar��

� is�stack �symbols�
� is�stack �states�
� is�stack �trees�
� ��stack�length �trees� ! stack�length �symbols� �

� ��� " stack�length �symbols� � ! stack�length �states����
� ��stack�length �sel�trees �next�� ! stack�length �sel�symbols �next���

� ��� " stack�length �sel�symbols �next���
! stack�length �sel�states �next����

	���� Leaves

Appending the leaves from the tree stack in reverse stack order to the rest of the input gives
the original input� and this remains invariant throughout parsing� This is the case because for
every shift action that is taken by parsing�step� a tree consisting of just one node containing
the shifted symbol is pushed onto the tree stack� When a reduction takes place� n trees are
replaced by one with a new root and each tree as a branch from this root� The frontier of this
tree� however� is the same as the concatenation of the frontiers of the trees participating in the
reduction�

let next ! parsing�step �c� tables� grammar�
in leaves �from�bottom �c�trees�� ��c�input�� !

leaves �from�bottom �next�trees�� ��next�input� endlet

For the longest time� this invariant seemed to be unprovable� NQTHM would wander o�
into nether regions� either generalizing away the important terms or doing irrelevant inductions�
The theorem was then split into a base case theorem and an induction step theorem� from which
the main invariant can be deduced� The base case is a simple rewrite proof�

Theorem� leaves�base
append �leaves �from�bottom �emptystack� �� input� ! input

The step case was maddening� It split as expected into two cases� one for a shift action
and one for a reduction action� The shift case was easy enough to prove with a rewrite rule
on leaves� append� and the leaves of a newly constructed tree�

Theorem� leaves�append
listp �b� � �leaves �append �a� b�� ! append �leaves �a�� leaves �b���

Theorem� leaves�list�tree!frontier
�is�tree �tree� � �tree �! emptytree��
� �leaves �list �tree�� ! frontier ��tree� tree��

Theorem� con�guration�induction�step�shift
�token�listp �input�
� listp �input�
� is�stack �trees�
� �next ! mk�con�guration �cdr �input��

push �s � states��

��� CHAPTER �� THE PARSING SKELETON

push �car �input�� symbols��
push �mk�tree �car �input�� nil� � trees��
parse� deriv � f���

� �append �leaves �from�bottom �sel�trees �next���� sel�input �next��
! append �leaves �from�bottom �trees��� input��

But the reduction case just wouldn�t yield� I gave up trying to obtain any of these proofs
and began writing up this thesis and trying to explain why it seemed impossible to prove�
There was a lemma that just wouldn�t prove� although it was �obvious��

Theorem� leaves�from�bottom�reduce�leaves
�is�stack �trees�
� �leaves �from�bottom �reduce�trees �lhs � size� trees���

! leaves �from�bottom �trees���

I then realized that the prover was indeed correct to not accept the invariant� the theorem
does not hold if size is zero � in this case the stack grows# My hand proof of the theorem
had missed this case entirely� as well as the case where size is larger than the current stack
size� But even with a hypothesis about size� NQTHM still wouldn�t assent to the theorem� A
successful sequence of rewrites was eventually found using PC�NQTHM� First the relationship
between the frontier of a tree and leaves had to be explained�

Theorem� frontier�leaf�rewrite
frontier ��tree� mk�tree �a� b��
! if is�leaf �mk�tree �a� b�� then list �a�

else frontier ��branches� b� endif

Theorem� frontier�tree�is�leaves
listp �l�
� �frontier ��tree� mk�tree �x � l�� ! leaves �l��

Interestingly enough� leaves�append in the other direction was also needed� It can be
proven and disabled so that it doesn�t cause a loop in the rewriting� Proving the theorem as
an equivalence will not help the proof�

Theorem� append�leaves
listp �b�
� �append �leaves �a�� leaves �b�� ! leaves �append �a� b���

Then a very bad rewrite rule about pop�n and pop was needed that also must be disabled
and only applied once by hand at a particular point in the proof � any automatic use of the
lemma by the prover begins an in�nite rewrite chain��

Theorem� pop�n�sub��pop
�is�stack �trees� � �size �� �� � �stack�length �trees� �� size��
� �pop�n �size
 �� pop �trees�� ! pop�n �size� trees��

Now an interesting� rather complicated rewrite rule is used that moves the from�bottom

function application out so that the term on the inside collapses�

�Of course� it�s not really in�nite� because it terminates when the rewrite stack over!ows� Inspecting the
path shows that the only rule used in the last thousand rewrites or so was this one�

���� THE INVARIANTS OF PARSING ���

Theorem� append�from�bottom�pop�n
is�stack �s�
� �append �from�bottom �pop�n �n� s��� top�n �n� s�� ! from�bottom �s��

And now the needed rewrite rule can be proven� but only with a lot of encouragement in
PC�NQTHM�

Theorem� leaves�from�bottom�reduce�trees�

�is�stack �trees� � �size �� �� � �stack�length �trees� �� size��
� �leaves �from�bottom �reduce�trees �lhs � size� trees���

! leaves �from�bottom �trees���

The list of hints needed looks intimidating� but is really quite simple�

�INSTRUCTIONS PROMOTE

�DIVE � � ��

X UP

�REWRITE FROM�BOTTOM�PUSH�

UP

�REWRITE LEAVES�APPEND�

�DIVE ��

�REWRITE LEAVES�LIST�TREE�FRONTIER�

�CHANGE�GOAL �MAIN � �� T�

PROVE TOP

�DIVE � � � ��

X TOP

�DIVE � � � ��

�CLAIM �LISTP �TOP�N SIZE TREES���

TOP

�DIVE � ��

�REWRITE FRONTIER�TREE�IS�LEAVES�

UP

�REWRITE APPEND�LEAVES�

�DIVE � � ��

�REWRITE POP�N�SUB��POP�

TOP

�DIVE � ��

�REWRITE APPEND�FROM�BOTTOM�POP�N�

TOP PROVE�

This corresponds to the following rewrite proof with f�b representing from�bottom� app
representing append� n representing size� and tr representing trees out of space considera�
tions�

leaves�f�b�reduce�trees�lhs�n�tr��� �

leaves�f�b�push�mk�tree�lhs�top�n�n�tr���pop�n�n�tr���� �

leaves�app�f�b�pop�n�n�tr���list�mk�tree�lhs�top�n�n�tr����� �

app�leaves�f�b�pop�n�n�tr����leaves�list�mk�tree�lhs�top�n�n�tr����� �

app�leaves�f�b�pop�n�n�tr����frontier��tree�mk�tree�lhs�top�n�n�tr���� �

app�leaves�f�b�pop�n�n�tr����leaves�top�n�n�tr��� �

leaves�app�f�b�pop�n�n�tr���top�n�n�tr��� �

leaves�f�b�tr��

�This proof was shown to Alan Bundy� who works on rippling strategies in automatic proof� He� too� found
the proof strange� and o�ered an improvement� combining the rewrite rules leaves�list�tree	frontier and
frontier�tree�is�leaves into one rule� After working with the theorem for a while he found a proof using
the same rules using di�erence matching �a technique not used by NQTHM�� but the proof needs to select the
append�from�bottom�pop�n rule to start with� a non�obvious choice� All attempts to coax NQTHM with hints
to see the rewriting proof based on either Alan�s or my proof fail � it wants to induct because it doesn�t see
anything promising to rewrite� The proof script found at the URL given on page � uses the better formulation
of the leaves
frontier lemma and thus hat a bit shorter hint list than the one given below�

��
 CHAPTER �� THE PARSING SKELETON

With this theorem� the reduction case can now be proven� Then just a few more minor
theorems are needed before the leaves step invariant can be proven�

Theorem� con�guration�induction�step�reduce
�token�listp �input�
� listp �input�
� is�stack �trees�
� �size �� ��
� �stack�length �trees� �� size�
� �next ! mk�con�guration �input �

push �s � states��
push �car �input�� symbols��
reduce�trees �lhs � size� trees��
parse� deriv � f���

� �append �leaves � from�bottom �sel�trees �next�� �� sel�input �next� �
! append �leaves �from�bottom � trees��� input��

Theorem� frontier�branches�is�leaves
frontier ��branches� q� ! leaves �q�

Theorem� leaves�from�bottom�pop�n�trees
�is�stack �trees� � �size �� �� � �stack�length �trees� �� size��
� �append �leaves �from�bottom �pop�n �size� trees��� �

frontier ��branches� top�n �size� trees���
! leaves �from�bottom �trees� ��

Theorem� append�elimination
�append �x � y� ! a� � �append �x � append �y � z �� ! append �a� z ��

Theorem� great�parsing�step�invariant
�next ! parsing�step �mk�con�guration �input � states � symbols � trees � parse� deriv � f��

tables � grammar��
� �append �leaves �from�bottom �sel�trees �next���� sel�input �next��

! append �leaves �from�bottom �trees��� input��

Right Sentential Form

The concatenation of the symbol stack� in order from the bottom and the rest of the input is a
right sentential form in the grammar� This can be seen by reading backwards in a Mayer�like
derivation� if the target of a derivation step is a right sentential form� then the source is as
well �nothing changes on the right part�� And if target��i� ! source��i��� but sel�right ��i� �!
sel�right ��i��� and �i�� is a right�sentential form� then �i is a right sentential form as well� as
sel�lhs �sel�prod ��i���� must be the rightmost non�terminal in sel�left ��i�

� sel�rhs �sel�prod
��i��� In the initial con�guration� there is no derivation step and the symbol stack is empty�
When the �rst derivation step is constructed� the left part is the symbol stack after removing
size elements but before pushing the left�hand side of the reduced production onto it� and the
right part is the rest of the input� This then is a right sentential form�

This means that if a con�guration contains a right sentential form� then applying the
function parsing�step to the con�guration will result in a con�guration that also contains a
right sentential form�

���� THE INVARIANTS OF PARSING ���

is�wf�Grammar �grammar� �
is�right�sentential�form �from�bottom �conf�symbols� ��conf�input��
!�
let next ! parsing�step �conf� tables� grammar�
in is�right�sentential�form �from�bottom �next�symbols� ��next�input� � endlet

The derivation section discussed the problems involved in expressing the property of a
right sentential form� But there is perhaps a way to prove something similar� It can be shown
that the concatenation of the symbols stack from the bottom and the rest of the input is the
same as the current source in the derivation being constructed� When a derivation has been
constructed� it can be determined if it is a right derivation� By de�nition� the sources and
targets of a right derivation are right sentential forms�

The induction step is easy but there are problems associated with the base case� In the
initial con�guration the derivation is empty � only after the �rst reduction has taken place is a
derivation step constructed� and then the target of the derivation step is the concatenation of
the �empty� symbol stack and the input# A way out could be to include a pseudo�derivation
step that has no production in it� but that would invalidate the test for derivation in a grammar�
as this would not be a production in the grammar� So here� only the proof of the induction
step is o�ered�

The shift case is trivial � nothing changes in the derivation� and pushing the next character
on the symbol stack has no e�ect� During the proof of this case� however� it was discovered
that some symbols were tokens and some were left hand sides of productions �and not tokens��
and thus the theorem did not hold� The token names have to be picked out of the sequence
using the pick�token�names function� Additionally� a lemma on car and append was needed�

Theorem� car�append�list
car �append �list �x�� y�� ! x

Theorem� inv�rt�sent���shift
��next ! mk�con�guration �cdr �input��

push �s � states��
push �token�name �car �input��� symbols��
push �mk�tree �car �input�� nil�� trees��
parse� deriv � f��

� listp �input�
� token�listp �input�
� �append �from�bottom �symbols�� pick�token�names �input�� ! step�source �car �deriv����
� �append �from�bottom �sel�symbols �next���

pick�token�names �sel�input �next���
! step�source �car �sel�deriv �next����

The reduction case needed a key lemma about the distributivity of append through the
combination of from�bottom and push�

Theorem� append�from�bottom�push
�is�stack �symbols�
� �append �from�bottom �symbols�� pick�token�names �input��

! append �d � cons �x � w����
� �append �from�bottom �push �lhs � pop�n �size� symbols���� pick�token�names �input��

! append �from�bottom �pop�n �size� symbols���
cons �lhs � pick�token�names �input����

��
 CHAPTER �� THE PARSING SKELETON

Theorem� inv�rt�sent���reduce
��next ! mk�con�guration �input �

push �goto� pop�n �size� states���
push �lhs � pop�n �size� symbols���
reduce�trees �lhs � size� trees��
append �parse� list �label���
append �list �mk�derivation�step

�from�bottom �pop�n �size� symbols���
mk�prod �label � lhs � top�n �size� symbols���
pick�token�names �input����

deriv��
f��

� is�stack �symbols�
� �append �from�bottom �symbols�� pick�token�names �input��

! step�source �car �deriv����
� �append �from�bottom �sel�symbols �next��� pick�token�names �sel�input �next���

! step�source �car �sel�deriv �next����

The theorem is of course true when an error is signalled� and so the invariant can easily
be shown�

Theorem� inv�rt�sent��
��next ! parsing�step �mk�con�guration �input � states � symbols � trees � parse� deriv � f��

tables � grammar��
� is�stack �symbols�
� token�listp �input�
� listp �input�
� �append �from�bottom �symbols�� pick�token�names �input��

! step�source �car �deriv����
� �append �from�bottom �sel�symbols �next��� pick�token�names �sel�input �next���

! step�source �car �sel�deriv �next����

	���� Number of Reductions

The number of non�leaf nodes in the tree stack is equal to the length of the reduction string�

length �c�parse� ! node�count �c�trees�

Two auxiliary lemmata about node�count interactions and one about length and append

must be proven�

Theorem� length�append
length �append �a� b�� ! �length �a� " length �b��

Theorem� node�count�append
node�count ��branches� append �a� b��
! �node�count ��branches� a� " node�count ��branches� b��

Theorem� node�count�top�n�pop�n
�node�count ��branches� top�n �size� trees��

���� THE INVARIANTS OF PARSING ���

" node�count ��branches� from�bottom �pop�n �size� trees����
! node�count ��branches� from�bottom �trees��

The shift case proves without further problems�

Theorem� inv�reductions�shift
��next ! mk�con�guration �cdr �input��

push �s � states��
push �token�name �car �input��� symbols��
push �mk�tree �car �input�� nil�� trees��
parse� deriv � f��

� �node�count ��branches� from�bottom �trees�� ! length �parse���
� �node�count ��branches� from�bottom �sel�trees �next��� ! length �sel�parse �next���

In trying to prove the reduction step� a slight problem in the de�nition of node�count
turned up � the empty tree had node count
� as did the singleton tree� But a hypothesis can
be added to the step proof that the tree stack is not empty� since the main invariant will easily
be able to relieve this hypothesis during the proof�

Theorem� node�count�reduce�trees
��size �� �� � �stack�length �trees� �� size� � �trees �! emptystack��
� �node�count ��branches� from�bottom �reduce�trees �lhs � size� trees���

! �� " node�count ��branches� from�bottom �trees����

Theorem� inv�reductions�reduce
��next ! mk�con�guration �input �

push �goto� pop�n �size� states���
push �lhs � pop�n �size� symbols���
reduce�trees �lhs � size� trees��
append �parse� list �label���
append �list �mk�derivation�step �from�bottom �pop�n �size� symbols���

mk�prod �label � lhs � top�n �size� symbols���
pick�token�names �input����

deriv��
f��

� �size �� ��
� �stack�length �trees� �� size�
� �node�count ��branches� from�bottom �trees�� ! length �parse���
� �node�count ��branches� from�bottom �sel�trees �next��� ! length �sel�parse �next���

For the main invariant proof the prover must be forced to use an induction scheme as it
chooses an induction over states� instead of on the length of the tree stack� At one point the
prover chooses to use the axiom is�wf�action�action�tab� which states as an axiom that
using action�lookup will only result in a proper action� i�e� a shift� a reduce� or an error�
Since the proof will go through without this axiom� the axiom can be explicitly disabled before
submitting this event�

Theorem� inv�reductions
��next ! parsing�step �mk�con�guration �input � states �symbols � trees �parse� deriv � f��

tables � grammar��
� �trees �! emptytree�
� �node�count ��branches� from�bottom �trees�� ! length �parse���
� �node�count ��branches� from�bottom �sel�trees �next��� ! length �sel�parse �next���

��� CHAPTER �� THE PARSING SKELETON

Roots

The roots of the reverse order of the forest on the tree stack are the same as the reverse order
of the symbol stack�

roots �from�bottom �c�trees�� ! from�bottom �c�symbol�
!�
let next ! parsing�step �c� tables� prods�
in roots �from�bottom �next�trees�� ! from�bottom �next�symbol� endlet

Proving the shift case seemed easy� just a few lemmata about the interaction of roots with
functions were needed� A major �aw in the �rst statement of the invariant was uncovered� It
again had to do with the token names� When a shift takes place� a tree with a token as the
node is pushed on the tree stack� When a reduction takes place� the node is no longer a token
but a left hand side of a production� After applying pick�token�name to the result of nodes�
a further problem was found� nodes will only work on a stack of trees� If there is anything
on the stack that is not a tree� the theorem does not hold� So the function roots had to be
adjusted to ignore all non�tree elements of the stack� Now the invariant could be proven�

Theorem� roots�mk�tree
roots �list �mk�tree �a� b��� ! list �a�
Theorem� roots�append
listp �b� � �roots �append �a� b�� ! append �roots �a�� roots �b���
Theorem� pick�token�names�append
pick�token�names �append �a� b�� ! append �pick�token�names �a�� pick�token�names �b��
Theorem� pick�token�names�list
tokenp �a� � �pick�token�names �list �a�� ! list �token�name �a���
Theorem� inv�roots�shift
��next ! mk�con�guration �cdr �input��

push �s � states��
push �token�name �car �input��� symbols��
push �mk�tree �car �input�� nil�� trees��
parse� deriv � f��

� is�stack �symbols�
� token�listp �input�
� listp �input�
� is�stack �trees�
� �pick�token�names �roots �from�bottom �trees���

! from�bottom �symbols���
� �pick�token�names �roots �from�bottom �sel�trees �next����

! from�bottom �sel�symbols �next���

For the reduction case the assurance that the tree stack is indeed a stack of trees must
be included in the hypothesis � that should be easy to prove� The prover was stuck on a
case that is indeed troublesome� if the left hand side of a production happens to be a token�
then the theorem does indeed not hold� as picking the token name would result in a di�erent
string� This cannot happen since a production can only have a non�terminal as a left�hand
side� not a token� But this seems impossible to tell NQTHM � although it is just a simple
case� easily excluded if a prover has type checking available� The proof of this invariant had
to be abandoned because of time considerations and is left stated as a conjecture�

���� THE INVARIANTS OF PARSING ���

Conjecture� inv�roots�reduce
��next ! mk�con�guration

�input �
push �goto� pop�n �size� states���
push �lhs � pop�n �size� symbols���
reduce�trees �lhs � size� trees��
append �parse� list �label���
append �list �mk�derivation�step �from�bottom �pop�n �size� symbols���

mk�prod �label � lhs � top�n �size� symbols���
pick�token�names �input����

deriv��
f��

� is�stack �symbols�
� token�listp �input�
� �stack�length �trees� �� size�
� �size �� ��
� listp �input�
� is�stack �trees�
� �pick�token�names �roots �from�bottom �trees���

! from�bottom �symbols���
� �pick�token�names �roots �from�bottom �sel�trees �next����

! from�bottom �sel�symbols �next���

	���� Nodes

The set of all non�leaf nodes in the tree stack are labelled with left�hand sides from some
production from the grammar� and they have the appropriate number of labelled children as
the corresponding right�hand sides�

 n � nodes �c�trees�
� p � prods � root�n� � p�lhs � roots �children �n�� ! p�rhs

This invariant cannot be proven without knowledge of how the table was constructed from
the grammar� The table encodes into the reduction action the needed information about the left
hand side� the production number� and the size of the right hand side� It would be conceivable
to go back and change the representation of the table to include just the label for the production�
and at this point to select that production from the grammar and determine the left hand side
and the size of the right hand side from that� That would enable this invariant proof to be
conducted� and would more closely tie in the grammar to the parsing process �at the moment
it is irrelevant� all information from the grammar must come from the table��

Perhaps a theorem that concerns both the parsing table and a parsing action could be
shown in order to demonstrate that the main theorem stated below is correct� It concerns the
condition of the symbol stack when a reduction action is called for� If the table is well�formed�
then the right hand side of the production which is to be reduced will be a su�x of the symbol
stack� If this were not the case� then a tree representing a false production would be put on
the tree stack and the derivation would contain it as well� This would cause the predicate

��	 CHAPTER �� THE PARSING SKELETON

is�right�derivation�in to return F� It is completely unclear how such a theorem could be
stated in the logic of the prover�

Another possibility would be to include information in the table lookup on the expected
right hand side of the production� and the parsing skeleton could check that it is a su�x of the
symbol stack before doing a reduction� But in order to do any of this I would have to go back
and completely redo all proofs done up until now� So this invariant is left unproven�

	���	 Main Theorem

The main theorem might seem rather trivial after the invariants have been proven� if the parsing
skeleton terminates with accept� a right parse for the input string has been found because a
right derivation has been constructed� Such a derivation consists only of right sentential forms�
and when the production chain is reversed� one obtains exactly the parse string� In addition�
the parse tree frontier is the same as the input token sequence�

A parse string corresponds to a derivation when its reverse contains the labels of the
productions of the derivations in the same order�

Definition�
corresponds �parse� deriv � grammar�
! if parse � nil

then deriv � nil

else prod�nr �grammar�productions� car �parse�� ! �car �deriv���prod
� corresponds �cdr �parse�� cdr �derive�� grammar� endif

The main theorem states that the parsing process always produces a right derivation from
the axiom to the input sequence which corresponds to the parse string� and the leaves of the
parse tree retrieve to the original sequence� Since it has not been proven� it is noted here as a
conjecture

Conjecture� main�theorem
input � grammar�terminals�

� let conf be parser �input � tab� grammar� in
accepting �conf � grammar�axiom�
� is�right�derivation�in �conf�deriv � G�

� source �conf�deriv� !
prod�nr �grammar�productions � grammar�axiom��lhs

� target �conf�deriv� ! input
� corresponds �reverse �conf�parse�� conf�deriv� grammar�
� leaves �conf�trees� ! input endlet

The proof would proceed by induction on the number of parsing steps� showing that the
initial con�guration is a right derivation and that applying parsing�step preserves right�
derivation�ness� If the parser terminates successfully� the source of the derivation in the con�
�guration will be the left hand side of the axiom� If the derivation is constructed properly by
parsing�step� then the result is indeed a right derivation�

This concludes the parsing skeleton proofs� A discussion some of the problem points can
be found in Section ����� of the Conclusions chapter�

Chapter �

The Parser Table Generator

Proving an LR parser table generator correct with a veri�cation system is a daunting task�
Despite the wealth of mathematical background that is available for assistance� it is not easy
to formalize constructively what takes place� Many of the proofs in the literature rely heavily
on explicit or even hidden existential quanti�cation� In addition� many of the di�erent authors
employ di�erent notations that tend to be not quite compatible with one another� thus making
the task that much more di�cult�

This chapter discusses the process of creating a parsing table for a shift�reduce parser
in a veri�able manner� The process of generating a table is described in Section ��� and in
Section ��	 some theorems about correct table generation are stated� However� because of
the complexity of the functions and time constraints no proofs were completed� Section ���
demonstrates that it is possible to implement the algorithms in the restricted language of the
Boyer�Moore logic� A parsing table for PLR

� was generated by this implementation and is
available at the URL given in Section ����

	�� LR Parsing methods

There are quite a number of methods for generating a table for driving a parser which works
bottom�up producing a right derivation� This section will brie�y discuss a few of them�

� Canonical LR��� parser
This construction method works for grammars which have the LR�
� property� That is�
they are parseable from left to right with no lookahead� A canonical collection of items�
constructed from the productions� comprises a nondeterministic �nite state automaton
that recognizes viable pre�xes for deciding when to reduce a particular production� The
method of Rabin�Scott can be used to convert this to a deterministic automaton� Unfor�
tunately� many interesting programming language constructs are not expressible in such
a grammar� i�e� they provoke reduce�reduce or shift�reduce con�icts�

� Canonical LR�k� parser
Extending this concept with a k�character lookahead would produce LR�k� parsing tables�
As described in Langmaack �Lan���� the stack classes of order k can be de�ned and
tables derived from this� However by coding the complete lookahead information into
the states� an exponential explosion in the number of states needed for such a table takes
place� Some methods have been described �Pag��� HW�
� for compacting the tables or
generating them more e�ciently� But this method remains impractical�

� Simple LR�k� parser
DeRemer described in �DeR��� a simple method for recognizing a subset of LR�k� gram�

���

��� CHAPTER �� THE PARSER TABLE GENERATOR

mars based on the canonical LR�
� parser for the grammar� After generating it� an
attempt is made to resolve the con�icts by calculating a simple follow set� This method
works well and it is easier to formulate correctness predicates about it than for the other
methods� But it does not su�ce for a number of important programming language con�
structs because it does not have enough information about the left context of the current
con�guration to resolve the con�icts properly�

� Lookahead LR�k� parser
This last major method is often used in parser generators such as yacc� States with a
common kernel are di�erentiated by a k�lookahead� This gives enough context inform�
ation so that almost all interesting programming language constructs can be parsed� It
will� however� only recognize a subset of the LR�k� languages� although the example
grammars that are LR�k� but not LALR�k� for any k are rather contrived�

The decision to use SLR��� was based mostly on the possibility of breaking the method
down into three major steps� One of them is the conversion from nondeterministic to determ�
inistic automata� which was proven correct in Chapter �� Being able to �reuse� a proof would
greatly facilitate the proof e�ort�

	�� Constructing a Parsing Table

This chapter discusses the process of constructing an SLR��� parsing table and shows that
with the help of the NFSA � DFSA proof discussed above� it would be possible to mechanize
a proof of correctness for such a table construction algorithm�

Figure ��� depicts the process of constructing an SLR��� parsing table from a grammar� The
construction revolves around the idea of a canonical collection� which is used in constructing
a nondeterministic �nite state automaton for recognizing viable pre�xes for sentential forms
of the grammar� Using the method described in Rabin�Scott �RS���� this automaton can be
transformed to an equivalent� deterministic one� From this deterministic automaton a parsing
table can be extracted that can be used by the parsing skeleton described in Chapter ��

Grammar Representation

�
Create NFSA for LR�
�

NFSA

�
NFSA�DFSA

DFSA

�
Extract Table with Follow

SLR��� Parsing Table

Figure ���� Creating a Parsing Table from a Grammar

���� CONSTRUCTING A PARSING TABLE ���

����� Canonical Collection

The construction of the canonical collection �also known as the canonical LR�
� automaton�
is the basis of SLR��� table construction� Hopcroft and Ullmann �HU��� describe the process
in some detail� This exposition is based on their work� and is concerned �rst with sentential
forms and viable pre�xes�

De
nition �� A handle of a production in a grammar is its right hand side� A handle for
a parser stack is the top portion of the symbol stack� which corresponds to such a right hand
side�

De
nition �� A viable pre�x of a right sentential form � is any pre�x of � whose last symbol
is at most the rightmost symbol of the handle of ��

De
nition �� An item for a production A �	
 represents the partially recognized produc�
tion� and is denoted by a meta�symbol� the dot� between the recognized portion and the not�
yet�recognized portion� for example � A �	 �
 ��

For each production in the grammar the dot may be placed between any two symbols� or
may be the �rst or last symbol� Thus there are j rhs j " � items per production in a grammar�

De
nition �� An item � A �	 �
 � is valid for a viable pre�x when a right derivation exists

S!���Aw!��	
w

and � � �	�

Knowing which items are valid for a viable pre�x enables one to go backwards to determine
a right derivation� An item is called complete� when the dot is the rightmost symbol� When
� A �	 � � is a complete valid item for a right sentential form �� then it appears that the last
derivation step used the production A !�	� and thus the last right sentential form in the right
derivation of �w was �Aw� Of course� it is only a conjecture that it was the last reduction� It
is possible for there to be more than one valid complete item for a valid pre�x� which is the
case when there are reduce�reduce con�icts� or when there exists a pre�x of w that belongs to
a handle of �� which is called a shift�reduce con�ict� But if all are in fact the only reductions
and no symbols of w are pre�xes of handles� then the grammar is said to be LR�
��

The LR�
� subclass of deterministic context�free languages contains all pre�x�free lan�
guages� That means that for all w � L�G�� there does not exist a v � L�G� such that v is a
proper pre�x of w�

The items which are valid for the viable pre�xes of the language must be determined�
Since the LR�
� languages are pre�x�free� the pre�xes of right sentential forms will uniquely
determine the next action of the parser� The viable pre�xes for LR�
� languages can be
described by regular languages� and thus a �nite state automaton can be constructed for the
recognition of the viable pre�xes�

First a nondeterministic �nite state automaton is constructed with all the items for all the
productions in a grammar comprising the set of states� The NFSA for a grammar G ! �N� T�
P� S� is de�ned as follows�

Let M ! �Q� N � T� �� q�� Q� be a NFSA with Q the set of items derived from P and the
state q�� which is not an item� The state transition function � is constructed as follows�

�� ��q�� �� ! f� S � � 	 � j S �	 � P g

�� ��� A �	 � B
 �� �� ! f � B � � � � j B �� � P g

��
 CHAPTER �� THE PARSER TABLE GENERATOR

�� ��� A �	 � X
 �� X� ! f� A �	X �
 � g

The �rst transitions are those from the start state to all pre�dotted items containing the
start symbol on the left hand side� The second transitions are from an item with the dot just
in front of a non�terminal to all items for which that non�terminal is pre�dotted� The last
transition is for moving over the next input symbol� for X � N � T� Hopcroft and Ullman
�HU��� prove that a NFSA constructed in this manner has the property that ��q�� �� contains
the item � A �	 �
 � if and only if � A �	 �
 � is valid for ��

As an example the well�known grammar Gexpression will be used�

Gexpression ! �fE� T� F� Sg�
fPLUS� TIMES� OPEN� CLOSE� Ag�
f
� S ��! E�
�� E ��! E PLUS T�
�� E ��! T�
�� T ��! T TIMES F�
	� T ��! F�
�� F ��! OPEN E CLOSE�
�� F ��! A g�

�

The set of items used in the construction of the NFSA is thus

�� � S � � E � ��� � T �T TIMES � F �
�� � S �E � � ��� � T �T TIMES F � �
�� � E � � E PLUS T � ��� � T � � F �
	� � E �E � PLUS T � �	� � T �F � �
�� � E �E PLUS � T � ��� � F � � OPEN E CLOSE �
�� � E �E PLUS T � � ��� � F �OPEN � E CLOSE �
�� � E � � T � ��� � F �OPEN E � CLOSE �

� � E �T � � �
� � F �OPEN E CLOSE � �
�� � T � � T TIMES F � ��� � F � � A �
�
� � T �T � TIMES F � �
� � F �A � �

The NFSA constructed according to the above rules is depicted in �gure ����

It would� of course� be possible to use this nondeterministic automaton directly for parsing
� in that case� the skeleton parser would remember not only a current state but a set of states�
and would check for the following states for all elements of this set and the current input
symbol� This would however� be the same computations that are needed for computing the
DFSA� They would� however� have to be recomputed at every step� A gain in e�ciency without
loss of clarity of the algorithm can be e�ected by computing the deterministic automaton�

����� Obtaining a DFSA

The method used here for obtaining a deterministic automaton from the NFSA� is an optimized
algorithm described in Gough �Gou

� that uses ��closure to construct just the reachable states
in the DFSA�

The DFSA transition table is generated row by row� starting with the ��closure of the start
state of the NFSA as the label for the �rst row� There is a column for each input symbol of

���� CONSTRUCTING A PARSING TABLE ���

��

�F � �E���

�

�F � �E���

��

�F � ��E��

��

�F � ��E��

�	

�T � �F�

�

�T � F��

�E � �T�

�

�E � T��

��

�F � �a�

��

�F � a��

��

�T � T��F�

��

�T � T�F��

��
�T � T��F�

�

�E � E�T��

�

�E � E��T�

�E � E��T�

	

�E � �E�T�

�
�T � �T�F�

�

�S � �E�

�

�S � E��

�

q�

� �
�
E

�
�

�

�

� F
�

�

� T

������

�a

�F

�
T

�
�

�
E

��

� �

� E
� �

�
�

�
�

������
�

Q
Q
QQs
�

Q
Q
QQs
T

�������������	

�

R

�

� �

��
��

��
��

��
���

�

� �
�

�

� �
�

�

Figure ���� The NFSA for Gexpression

the alphabet� The entries for each column consist of the ��closure of the set of states reachable
from the set of states in the row label by a transition on the symbol for that column� If a new
set of states is created� a new row is added to the transition table with this set of states as
the label� Since the number of subsets of a �nite set is bounded� this process will eventually
terminate� either when no new sets are created or when all sets of subsets have been generated�

When this process is completed� a new state name is given to each set of states� If any
state in the set is a �nal state� the DFSA state is now also a �nal state� Figure ��� depicts the
generation of the DFSA from the NFSA for the Gexpression �

The set of �nal states for the DFSA is f�� �� �� 	� �� �
� ��g� The deterministic state
numbers represent the following equivalence classes of viable pre�xes�

I� � � S � � E �
� E � � E PLUS T �
� E � � T �
� T � � T TIMES F �
� T � � F �
� F � � OPEN E CLOSE �
� F � � A �

��
 CHAPTER �� THE PARSER TABLE GENERATOR

NFSA E T F a " $ � � New
set of state
states

f
����� f��	g f
��
g f�	g f�
g f������

������� ������
�����g �����g

f��	g f������� �
�����g

f
��
g f������ �
��g

f�	g �

f�
g 	

f������ f	���g f
��
g f�	g f�
g f������ �
������ �����
�����g �����g

f������� f���
g f�	g f�
g f������ �
�����g �����

�����g

f������ f��g f�
g f������ �
��g �����

�����g

f	���g f������� f�
g

�����g

f���
g f������ �
��g

f��g �

f�
g ��

Figure ���� Constructing the DFSA for Gexpression

I� � � S �E � �
� E �E � PLUS T �

I� � � E �T � �
� T �T � TIMES F �

I� � � T �F � �

I� � � F �A � �

I� � � E � � E PLUS T �
� E � � T �
� T � � T TIMES F �
� F � � OPEN E CLOSE �
� F �OPEN � E CLOSE �
� F � � A �
� T � � F �

I� � � E �E PLUS � T �
� T � � T TIMES F �
� T � � F �
� F � � OPEN E CLOSE �
� F � � A �

���� CONSTRUCTING A PARSING TABLE ���

I� � � T �T TIMES � F �
� F � � OPEN E CLOSE �
� F � � A �

I	 � � E �E � PLUS T �
� F �OPEN E � CLOSE �

I
 � � E �E PLUS T � �
� T �T � TIMES F �

I��� � T �T TIMES F � �

I��� � F �OPEN E CLOSE � �

The DFSA can be constructed directly from the transition table and is given in �gure ��	�

��
��

�

��
��

�

��
��

��
��

��
��

�

��
��
��
	

�

��
��
��
	

�

��
��
��
	

� ��
��
��
	

� ��
��
��
	

�

��
��
��
	

	

��
��
��
	

��

�

a

�

a

�a � a

�

F �
E

������������

E

HHHHHHHHHHHj

F

I

$

S
S
S
S
So

T

�

�

�
�

�
�

��

"

�
�

�

$

�
�
���F

A
A
A
A
A
A
A
A
A
A
AU

�

�
�

�
��

T

�

"

�

F

�
��

R

�

R
�

� T

� �

Figure ��	� The DFSA for Grammar Gexpression

����� Construction of the Parsing Table

How is a parsing table constructed from a DFSA� The current state of the DFSA and the cur�
rent lookahead must determine whether to shift a symbol onto the stack� to reduce a production�
or to raise an error�

Each state in the DFSA is a set of items representing an equivalence class of viable pre�xes�
If there is at most one complete item in the set� or if there is a complete item� then there is
no item of the form � A �	 � X
 � with X � T in the set� and the grammar is LR�
�� The
parsing skeleton will use the stack to store the viable pre�x� tracing out the recognition using
the DFSA� When it �nds a complete item� the corresponding production will be reduced� A

��� CHAPTER �� THE PARSER TABLE GENERATOR

complete item is found in the DFSA whenever a handle� one of the right hand sides of a
production� is on the stack and the state of the DFSA is a �nal state��

So if the lookahead corresponds to one of the labels on a transition� the parsing table should
indicate a shifting action� If the lookahead determines that a reduction can be made � and that
is the case when a completed item is in the state � the table should indicate what reduction is
to be made� and to show where to continue the recognition�

Traditionally such a parsing table is divided into two parts� The action table returns an
action �shift� reduce and production number� or error� and the following state for the current
state and the current lookahead� The goto table� which is consulted after reduction� maps the
state uncovered on the state stack after the reduction and the non�terminal on the left hand
side of the production reduced to the following state�

The action table follows directly from the DFSA� It is usually represented as a matrix� as
seen in the example below�� For each state in the DFSA there is a row in the table� and a
column for each symbol in T� If for any state there is an arc labelled with a terminal symbol
leading out of it� the action shift and the number of the state �i� to which the arc leads is
entered in the table at the position for that state and symbol as Si� If there is a complete item
in the state� the follow set for the left hand side of this production must be calculated�� A
reduction by the production of the complete item is entered into the table for the state and for
each of the symbols in the follow set as Rj with j as the production label unless there is more
than one completed item� in which case there is a reduce�reduce con�ict�

The follow set for a non�terminal is de�ned as �ASU
���
FIRST�X�

� If X � T� then FIRST�X� ! fXg�

� If X �� � P� then add � to FIRST�X��

� If X � N and X �Y�Y� � � �Yk is a production� then place a in FIRST�X� if for some i�
a is in FIRST�Yi�� and � is in all of FIRST�Y��� � � � � FIRST�Yi���� If � is in all of the
FIRST�Yi� then add � to FIRST�X��

FOLLOW�A�

� Place a in FOLLOW�S� where S is the start symbol and a is the input right end marker�

� If there is a production A �	B
 � P� then everything in FIRST�
� except for � is placed
in FOLLOW�B��

� If there is a production A �	B � P� or a production A �	B
 where FIRST�
� contains
�� then everything in FOLLOW�A� is in FOLLOW �B��

There can be a reduction from a state that also has a shift action if the follow set for the
left hand side of the production does not contain any lookahead symbols for which a shift is
de�ned � otherwise there is a shift�reduce con�ict� In Gexpression � the follow sets for the left
hand sides are

�Note that it is possible for there to be a handle on the stack when there are no complete items in the current
state� The production indicated by the handle is reduced� the appropriate number of elements are popped o�
the symbol and the state stack� and depending on the state found there and the left hand side of the production
just reduced� the next state of the DFSA will be calculated �called the goto�� The automaton is returned to the
state it was in just before the �rst element of the handle was pushed onto the stack� either by shift or reduce�
and the next state is chosen as if the reduced left hand side were the next input symbol� This is surely the
reason chosen by DeRemer for prepending the left hand side to the input in �DeR���� which was the theoretical
basis given by Polak for doing the same in his implementation�

�Since the language of the prover does not have a matrix data type� a structurally equivalent representation
�an association list� will be used�

�The follow is calculated with k symbols of lookahead� The examples use k � ��

���� CONSTRUCTING A PARSING TABLE ���

A OPEN CLOSE TIMES PLUS EOF E T F

 S� S� � � �
� S� R�

� R� S� R� R�

� R� R� R� R�

	 R� R� R� R�

� S� S�
 � �
� S� S� � �
� S� S� �

 S�� S�
� R� S� R� R�

�
 R� R� R� R�

�� R� R� R� R�

Figure ���� The Parsing Table for Gexpression

State stack Symbol stack Input Action

 A PLUS A TIMES A EOF S�

 	 A PLUS A TIMES A EOF R�

 � F PLUS A TIMES A EOF R�

 � T PLUS A TIMES A EOF R�

 � E PLUS A TIMES A EOF S�

 � � E PLUS A TIMES A EOF S�

 � � 	 E PLUS A TIMES A EOF R�

 � � � E PLUS F TIMES A EOF R�

 � � � E PLUS T TIMES A EOF S�

 � � � � E PLUS T TIMES A EOF S�

 � � � � 	 E PLUS T TIMES A EOF R�

 � � � � 	 �
 E PLUS T TIMES F EOF R�

 � � � E PLUS T EOF R�

 � E EOF R�

 S EOF Accept

Figure ���� The Parsing of A PLUS A TIMES A EOF

FOLLOW�E� ! fCLOSE� PLUS� EOF g
FOLLOW�T� ! fCLOSE� TIMES� PLUS� EOF g
FOLLOW�F� ! fCLOSE� TIMES� PLUS� EOF g
FOLLOW�S� ! fEOF g

For all other entries� the error action is inserted� Error actions are usually denoted by
empty cells in the matrix representation� A reduction by the goal symbol �the axiom� was
de�ned to be the accept action above�

The goto table has rows for all states that have outgoing arcs labelled with non�terminal
symbols� After a reduction has removed the appropriate number of state markers from the
state stack� the state number that was valid just prior to the recognition of the right hand side
is on the top� The goto state is the state pointed to by the outgoing arc labelled with the
non�terminal on the left hand side�

The parsing table is just a collection of both an action and a goto table� The parse of the
string a�a�a using this parsing table is given in Figure ����

��	 CHAPTER �� THE PARSER TABLE GENERATOR

	�� Implementing the Table Generator

Each step in the generation process will be described in detail here� giving an implementation
in the Boyer�Moore logic�

����� Creating the NFSA

The �rst job is to construct the set of items for the productions in the grammar� This set
contains productions that are the same as the productions in the grammar� except that they
have a fresh symbol� dot� put at all possible intermediate positions at which a recognizer could
be during the recognition of a right hand side� The recursive function shift�dots�through

cdrs down the right hand side of a production inserting the dot at all possible positions� If for
some reason the left part of the right hand side �lrhs�in� is not a list� it is coerced to nil�
The function insert�dots �called for each production�� splits it into its components and calls
the function shift�dots�through� which returns a list of productions�

Definition�
shift�dots�through �lhs � lrhs�in� rrhs � label�
! let lrhs be if lrhs�in � nil then nil

else lrhs�in endif
in

if rrhs � nil
then list �mk�prod �label � lhs � append �lrhs � list �dot����
else append �list �mk�prod �label � lhs � append �lrhs � append �list �dot�� rrhs�����

shift�dots�through �lhs �
append �lrhs � list �car �rrhs����
cdr �rrhs��
label�� endif endlet

Definition�
insert�dots �prod�
! let lhs be sel�lhs �prod��

lrhs be nil�
rrhs be sel�rhs �prod��
label be sel�label �prod�

in

shift�dots�through �lhs � lrhs � rrhs � label� endlet

A few small sanity lemmata could be proven here� such as the expected number of items
produced for a production being one more than the number of symbols on the the right hand
side� or that removing the dots will result in the original production �i�e� no symbols are
switched��

The construction of the set of LR�
� items for a grammar collects the items for each
production in the grammar� It uses union just in case there should be a duplicate production
in the grammar�

Definition�
construct�item�set �prods�
! if prods � nil then nil

else insert�dots �car �prods�� � construct�item�set �cdr �prods�� endif

���� IMPLEMENTING THE TABLE GENERATOR ���

Definition�
lr�
�items �grammar� ! construct�item�set �sel�productions �grammar��

This set of productions can now be seen to construct a non�deterministic automaton� as
demonstrated in section ������ Each item represents a state� There are transitions labelled
with symbols from one state to another if the dot can be seen as �jumping over� the symbol�
or if the symbol after the dot is a nonterminal and the transition is to a state with the dot in
the �rst position�

����� Transforming the NFSA to an Equivalent DFSA

The transformation of the NFSA into an equivalent DFSA is done by constructing the canonical
collection for the set of productions in the grammar�

Closure

The �rst major function needed for the transformation is closure� It collects from any state
all the possible following states reachable from this state by any number of � steps� This means
that new items reachable by an ��step are added to the set until no new items can be added�

The shell item�set is used for representing the notion of a set of item sets� A �rst imple�
mentation using only lists confused me because the depth of the parentheses were di�cult to
understand� The shell o�ers an explicit tag for marking a set of items� Problematic is� however�
that now all the usual functions on sets �union� equal� car� cdr� have to be implemented for
the shell� The function first�item has the same functionality as car� and rest�items the
same as cdr� A function is also needed to determine the size of an item set so that it can be
used in measures�

Event� Add the shell item�set � with bottom object function symbol empty�item�set � with
recognizer function symbol item�setp� and � accessor� sel�items � with type restriction �none�
of� and default value zero�

Definition�
�rst�item �is�
! if sel�items �is� � nil then nil

else car �sel�items �is�� endif

Definition�
rest�items �is�
! if sel�items �is� � nil then nil

else item�set �cdr �sel�items �is��� endif

Definition�
item�set�union �is
 � is� �
! if �is
 ! empty�item�set�

� �sel�items �is
 � � nil�
� �� item�setp �is� ��
� �� item�setp �is
 �� then is�

elseif �rst�item �is
 � � sel�items �is� �
then item�set�union �rest�items �is
 �� is� �
else item�set�union �rest�items �is
 ��

item�set �append �list ��rst�item �is
 ��� sel�items �is� ���� endif

��� CHAPTER �� THE PARSER TABLE GENERATOR

Definition�
equal�item�set �is
 � is� �
! let guts�is
 be sel�items �is
 ��

guts�is� be sel�items �is� �
in
item�setp �is
 � � item�setp �is� � � �guts�is
 ! guts�is� � endlet

Definition�
item�set�size �item�set�
! if �� item�setp �item�set��

� �sel�items �item�set� � nil�
� �item�set ! empty�item�set� then �

else � " item�set�size �rest�items �item�set�� endif

These functions turned out to be a source of error when the table construction was �rst
implemented� Theorems should have been formulated for stating the correctness of these
functions� and they should have been proven before continuing� The main problem was that
first�item returns something of type item� while rest�itemsmust return a set of items� This
was badly implemented � rest�items returned a list of items excluding the �rst item� which
was then repacked into an item set at times when it had become apparent that it was necessary�
The default value for the sel�items component was originally set to be empty�item�set�
meaning that the shell used the ground function for both an unde�ned item and an unde�ned
set� This was discovered to be troublesome when all of the item sets included the item set
empty�item�set as elements� This� too� should have �rst been proven to be an adequate
representation for item sets before proceeding� Not only must one concentrate on proving the
goal to be correct� it is also necessary to prove minor theorems about representations� This is
an extremely frustrating and time�consuming process� but of course it is even more frustrating
to attempt to prove theorems about improperly implemented functions�

For de�ning the closure a function is also needed that calculates which items can be reached
from a seed item without consuming an input symbol� These items are exactly the items with
the left hand side equal to the symbol directly following the dot in the seed item and with the
dot in the �rst position on the right hand side�

The function next�items selects all items out of a list of items for which the left hand
side is equal to a symbol and the dot is the �rst element of the right hand side� The function
symbol�after�dot cdrs down the right hand side of an item looking for the symbol following
the dot� The function epsilon�step�all calls next�items on all of the items in the item set
sis using the full item list fis�

Definition�
next�items �sym� all�items�
! if all�items � nil then nil

elseif �sym ! car �sel�lhs �car �all�items����
� �car �sel�rhs �car �all�items��� ! dot�

then append �list �car �all�items��� next�items �sym� cdr �all�items���
else next�items �sym� cdr �all�items�� endif

Definition�
symbol�after�dot �item�rhs�
! if item�rhs � nil then nil

elseif car �item�rhs� ! dot
then if cdr �item�rhs� � nil then nil

���� IMPLEMENTING THE TABLE GENERATOR ���

else cadr �item�rhs� endif
else symbol�after�dot �cdr �item�rhs�� endif

Definition�
epsilon�step�all �sis � �s�
! if �sel�items �sis� � nil�

� �sis ! empty�item�set�
� �� item�setp �sis�� then sis

else item�set�union �item�set �next�items �symbol�after�dot �sel�rhs ��rst�item �sis����
�s���

epsilon�step�all �rest�items �sis�� �s�� endif

Since the addition of any new item can introduce the possibility of further reachable items�
this process must be continued until no new items can be added to the item set� Since there
is the possibility of cycles �item � can have a transition to item � and vice versa�� it is not
su�cient to add the closure of the item to be added� A closure step must be de�ned to be the
item set reachable in one step from an item set� If the two are equal� the function terminates�
if not� the closure step must be repeated again� Since the function cannot add more items than
are in the full item set� the di�erence between the size of the full item set and the ��closure
could be used as a measure�

Definition�
closure�step �set
 � set� � �s � clock�
! if clock � � then �timed�out

elseif equal�item�set �set
 � set� � then set

else item�set�union �set
 �

closure�step �set� � epsilon�step�all �set� � �s�� �s � clock
 ��� endif

Definition�
closure �seed�item�set � �s�
! let �rst be epsilon�step�all �seed�item�set � �s�

in
closure�step �seed�item�set � �rst � �s � length ��s�� endlet

The Canonical Collection

The closure function is used to construct the canonical collection� which de�nes the determin�
istic �nite state automaton� The function jump�dot looks through a list of items for an item
which has the same label as item and whose dot is one position further to the right as item�
A check is included that the symbol �jumped over� is actually the one intended� although in
a correctly constructed item set� there cannot be more than one item with the same label and
the dot moved over one position� This is a point that could be optimized when doing a proper
proof of correctness for the table generator�

Definition�
jump�dot �item� sym� �s�
! if �s � nil then nil

elseif �sel�label �item� ! sel�label �car ��s���
� �position �dot� sel�rhs �car ��s���

! �� " position �dot� sel�rhs �item����
� �nth �position �dot� sel�rhs �item��� sel�rhs �car ��s���! sym�

then car ��s�
else jump�dot �item� sym� cdr ��s�� endif

��
 CHAPTER �� THE PARSER TABLE GENERATOR

jump�dot is used in the construction of the goto function Ij for an item set Ii� The item
set Ij consists of all the items reachable by jumping the dot over its following symbol for all
elements of Ii� There was a problem determining the termination condition for an empty item
set � it could not be distinguished from an ill�formed one or an item set that had no items�
Thus� the function dot�sym�in�item�set cdrs down a list of items instead of going item�
wise through a set of items� This is highly unsatisfactory� but it works for the present� The
goto�function constructs and deconstructs the item sets as necessary� jumps the dot for all
items in the set� and then takes the ��closure for the resulting item set�

Definition�
dot�sym�in�item�set �sym� items � �s�
! if items � nil then nil

elseif sym ! nth �� " position �dot� sel�rhs �car �items����
sel�rhs �car �items���

then let new be list �jump�dot �car �items�� sym� �s��
in
new � dot�sym�in�item�set �sym� cdr �items�� �s� endlet

else dot�sym�in�item�set �sym� cdr �items�� �s� endif

Definition�
goto�function �is � symbol � �s�
! let jump be dot�sym�in�item�set �symbol � sel�items �is�� �s�

in
if jump � nil then empty�item�set
else closure �item�set �jump�� �s� endif endlet

Now the canonical�collection can be implemented� Beginning with a seed item set�
which is the epsilon closure of the axiom� item sets will be added to the collection with the
function items until no further item sets can be constructed� The measure for this function
should be the di�erence between the number of elements in the power set of the full item
set and the number of elements in the set�of�item�sets� However� the notion of power set
contributes unnecessarily to the complexity of the function� It is su�cient to use the length of
the full item set� if ever the function items runs out of time� the marker �items�times�out
will be consed to the end of the set of item sets� The function items	 cdrs down the item set
list� using collection for calculating the collection for one item set and creating the union of
that with the collection for the rest of the items�

Definition�
collection �is � symbol�list � �s�
! if symbol�list � nil then nil

else let goto be goto�function �is � car �symbol�list�� �s�
in

if goto ! empty�item�set
then collection �is � cdr �symbol�list�� �s�
else append �list �goto��

collection �is � cdr �symbol�list�� �s�� endif endlet endif

Definition�
items� �set�of�item�sets � v � �s�
! if set�of�item�sets � nil then set�of�item�sets

else collection �car �set�of�item�sets�� v � �s�
� items� �cdr �set�of�item�sets�� v � �s� endif

���� IMPLEMENTING THE TABLE GENERATOR ���

Definition�
items �set�of�item�sets � v � �s � clock�
! if clock � � then cons �set�of�item�sets � �items�times�out�

else let cprime be items� �set�of�item�sets � v � �s�
in
if subsetp �cprime� set�of�item�sets�
then set�of�item�sets
else let sis be set�of�item�sets � cprime

in
items �sis � v � �s � clock
 �� endlet endif endlet endif

The construction of the seed item set is done by going through all of the items looking for
items with the axiom label and a dot as the �rst symbol on the right hand side� There should
only be one� but it does not matter if there is more than one� The closure of this seed item set
is the �rst item set in the collection� The call to items will construct the complete canonical
collection�

Definition�
start�item �start � �s�
! if �s � nil then nil

elseif �start ! sel�label �car ��s���
� �car �sel�rhs �car ��s��� ! dot�

then item�set �list �car ��s���
else start�item �start � cdr ��s�� endif

Definition�
canonical�collection �grammar�
! let start be sel�axiom �grammar��

voc be vocab �grammar��
�s be lr�
�items �grammar�

in

let c be list �closure �start�item �start � �s�� �s��
in

items �c� voc� �s � length ��s�� endlet endlet

����� Extracting the Parsing Table

The canonical collection is a deterministic �nite state automaton� The states of this automaton
are elements of the power set of the states for a nondeterministic automaton� The parsing
table� consisting of the goto and the action tables� is extracted from the canonical collection as
described below�

����� Action Table

The states in the deterministic automaton are given new names by numbering them� State

will be the item set I�� � the item set I�� etc� The goto function on the canonical collection will
be reused to determine the transition function for the action table� The function mk�actiontab

cdrs down the canonical collection calling the function one�state for each item set� one�state
calculates the actions from this state for all members of the terminal symbols and the end of
�le marker� The transition construction function a�mk�transition is similar to the one used
in constructing the NFSA for the scanning� it has been given a di�erent name so that it is clear
as to which one is being used�

�	
 CHAPTER �� THE PARSER TABLE GENERATOR

Definition�
a�mk�transition �state� input � action� ! cons �cons �state� input�� action�

Definition�
one�state �state� item�set � cc� terms � �s � follows�
! if terms � nil then nil

else append �list �a�mk�transition �state�
car �terms��
state�action �item�set � cc� car �terms�� �s � follows����

one�state �state� item�set � cc� cdr �terms�� �s � follows�� endif

Definition�
mk�actiontab �state� cc� fullcc� terms � �s � follows�
! if cc � nil then nil

else append �one�state �state� car �cc�� fullcc� terms � �s � follows��
mk�actiontab �� " state� cdr �cc��fullcc� terms � �s � follows�� endif

The function state�action determines the action for a particular state and symbol� The
shell and selector function for actions were discussed in Section ������ state�action uses
the goto�function and the follow set� passed through as a parameter� to determine both a
possible shift and a possible reduce action� The shift item can only be constructed if the
symbol is valid for some item in the item set� that is� if it is the symbol immediately following
the dot� If there is just one completed item in the item set� then there is a possible reduction
if the symbol is in the follow set for the left hand side of the completed item� If there is more
than one completed item� there is a reduce�reduce con�ict�

The possible shift and the possible reduction actions are then examined� If both are not
de�ned� this is an error action� If both are de�ned� there is a shift�reduce con�ict� if only one
is de�ned� this is the action that the function should return for this state and this symbol�

Definition�
valid�item �item�set � sym�
! if �� item�setp �item�set��

� �item�set ! empty�item�set�
� �sel�items �item�set� � nil� then f

else let item be �rst�item �item�set�
in

let rhs be sel�rhs �item�
in

let dot�pos be position �dot� rhs�
in

if sym ! nth �� " dot�pos � rhs�
then t
else valid�item �rest�items �item�set�� sym� endif endlet endlet endlet endif

Definition�
is�completed�item �item� ! �car �last �sel�rhs �item��� ! dot�

Definition�
completed�items �item�set�
! if �� item�setp �item�set��

� �item�set ! empty�item�set�

���� IMPLEMENTING THE TABLE GENERATOR �	�

� �sel�items �item�set� � nil� then nil
elseif is�completed�item ��rst�item �item�set��
then cons ��rst�item �item�set�� completed�items �rest�items �item�set���
else completed�items �rest�items �item�set�� endif

Definition�
is�in�follow �after � before� follows�
! if follows � nil then f

elseif before ! caar �follows� then after � cdar �follows�
else is�in�follow �after � before� cdr �follows�� endif

Definition�
state�action �item�set � cc� sym� �s � follows�
! let shift be if valid�item �item�set � sym�

then mk�shift�action �position �goto�function �item�set � sym� �s��
cc��

else empty�action endif�
reduce be let comps be item�set �completed�items �item�set��

in

if item�set�size �comps� ! 	

then if sym � lookup�follow �car �sel�lhs ��rst�item �comps����
follows�

then mk�reduce�action �sel�label ��rst�item �comps���
sel�lhs ��rst�item �comps���
length �sel�rhs ��rst�item �comps���
 ��

else empty�action endif
elseif item�set�size �comps� � �

then empty�action
else �reduce�reduce�conflict endif endlet

in

if is�action �reduce�
then if shift ! empty�action

then if reduce ! empty�action then mk�error�action
else reduce endif

elseif reduce ! empty�action then shift
else �shift�reduce�conflict endif

else reduce endif endlet

Goto Table

The goto table is only constructed for the non�terminals in the vocabulary� For all symbols A
in the non�terminals� if the goto�function for item set Ii and A is item set Ij � then the entry
in the goto table for i and A is j� This is easily done by cdring down the non�terminals and
then going down the states from the last to the �rst� This trick � the state numbers are the
position in the canonical collection plus one � o�ers an easy termination argument� The real
state is thus one less than the value of the parameter state�

Definition�
mk�goto���nt �cc� nt � state� �s�
! if state � � then nil

else let i�i be nth �state
 �� cc�

�	� CHAPTER �� THE PARSER TABLE GENERATOR

in
let goto be goto�function �i�i � nt � �s�
in
if goto ! empty�item�set
then mk�goto���nt �cc� nt � state
 �� �s�
else list �list �cons �state
 �� nt��

list ��goto� position �goto� cc����
� mk�goto���nt �cc� nt � state
 �� �s� endif endlet endlet endif

Definition�
mk�gototab �cc� nts � �s�
! if nts � nil then nil

else mk�goto���nt �cc� car �nts�� length �cc�� �s�
� mk�gototab �cc� cdr �nts�� �s� endif

First and Follow

The last stumbling stone on the road to the extraction of the parsing tables was the de�nition
of appropriate functions for the FIRST and FOLLOW functions� These are multiply mutually
recursive and� as typically de�ned in compiling texts� non�terminating� as for example� in cases
in which left�recursive productions such as A � Ax are included in the grammar� In addition
to the complex recursive de�nition� a �cycle�detector� had to be added� in order to stop if such
a production is encountered� Both functions used clocks for acceptance� as the termination
argument is non�obvious� An upper bound for driving the clock is the product of the number
of productions and the number of symbols� Since first and follow are so horribly complex�
no proofs were completed about it� This is unfortunate because they are the basis for other
functions in the table construction process� and thus� no theorems could be proven about any
of the functions�

The function delete is taken from the bags library in the NQTHM����� delivery package�

Definition�
delete �x � l�
! if listp �l�

then if x ! car �l� then cdr �l�
else cons �car �l�� delete �x � cdr �l��� endif

else l endif

First of all� an explicit epsilon notation and a function exists�prod� are de�ned� The
function exists�prod� checks to see if a production with a speci�c left hand side� right hand
side� and unspeci�ed label is in the production list�

Definition� epsilon ! �epsilon

Definition�
exists�prod� �prods � lhs � rhs�
! if prods � nil then f

elseif �lhs ! sel�lhs �car �prods���
� �rhs ! sel�rhs �car �prods��� then t

else exists�prod� �cdr �prods�� lhs � rhs� endif

There are three mutually recursive functions coded into this function first� which are
di�erentiated by a tag�

���� IMPLEMENTING THE TABLE GENERATOR �	�

�all�rhs determines the first set for the right hand side of a production� given in the
parameter rhs�

�all�prods cdrs down the list of productions given in the prods parameter� and

�first is called for a symbol given in the parameter x�

The set of terminal symbols� the complete list of grammar productions gram�prods� and a
clock complete the parameters of this function�

Definition�
�rst �tag � x � rhs � prods � terms � gram�prods � clock�
! if clock � � then �time�ran�out

elseif tag ! �all�rhs

then if rhs � nil then nil
else let handle be

�rst ��first� car �rhs��nil�nil� terms � gram�prods � clock
 ��
in

if epsilon � handle
then handle � �rst ��all�rhs� x � cdr �rhs�� nil� terms � gram�prods �clock
 ��
else handle endif endlet endif

elseif tag ! �all�prods

then if prods � nil then nil
elseif x ! car �sel�lhs �car �prods���
then �rst ��all�rhs� x � sel�rhs �car �prods��� nil� terms � gram�prods �clock
 ��

� �rst ��all�prods� x �nil�cdr �prods�� terms � gram�prods � clock
 ��
else �rst ��all�prods� x � nil� cdr �prods�� terms � gram�prods � clock
 �� endif

elseif x � terms then list �x�
else if exists�prod� �gram�prods � x � nil� then list �epsilon�

else nil endif
� �rst ��all�prods� x � nil� gram�prods � terms � gram�prods � clock
 �� endif

The first of a list is the first of the car of the list� and if that includes epsilon� then
the first of the rest of the list is included�

Definition�
�rst�list �l � terms � prods�
! if l � nil then nil

else let �rst�car be �rst ��first� car �l�� nil� nil� terms � prods �
length �terms� � length �prods��

in
if epsilon � �rst�car
then �rst�car � �rst�list �cdr �l�� terms � prods�
else �rst�car endif endlet endif

Compared to the three�way recursion of first� the de�nition of the follow function is
relatively easy� It� too� is de�ned recursively� and consists of the first for some sequence of
symbols and possibly a number of follows calculated for other non�terminals� The symbols
considered are accumulated in cycle�killer so that the function will stop if it attempts to
calculate the follow for a symbol that has already been seen� There is quite a nest of lets�
as many of the computations need to be done in series� Only for those productions for which
B is a member of the right hand side does the follow need to be calculated� beta is set to be

�		 CHAPTER �� THE PARSER TABLE GENERATOR

the rest of the right hand side following the symbol� and the first of this list is calculated� If
beta is nil� i�e� B was the last symbol or epsilon was a member of the first� the follow of
the left hand side of that production is included� which� if it is the left hand side of the axiom
will also cause the end of �le symbol to be included� The epsilon is never included in the
follow� and is deleted from the set if necessary�

Definition�
follow� �b� prods � terms � all�prods � axiom�lhs � cycle�killer � clock�
! if clock � � then �time�ran�out

elseif �b � cycle�killer� � �b � terms� then nil

elseif prods � nil then nil
else let rhs be sel�rhs �car �prods���

lhs be car �sel�lhs �car �prods���
in
if b �� rhs
then follow� �b� cdr �prods�� terms � all�prods � axiom�lhs � cycle�killer � clock
 ��
else let beta be nthcdr �� " position �b� rhs�� rhs�

in
let f
 be �rst�list �beta� terms � all�prods�
in
if �beta ! nil�
� �epsilon � f
 �

then if lhs ! axiom�lhs
then list �end�of�file�

� follow� �lhs � all�prods � terms �all�prods � axiom�lhs �
cons �b� cycle�killer�� clock
 ��

else follow� �lhs � all�prods � terms � all�prods � axiom�lhs �
cons �b� cycle�killer�� clock
 �� endif

else nil endif
� �delete �epsilon� f
 � �

follow� �b� cdr �prods�� terms � all�prods � axiom�lhs � cycle�killer � clock
 ���
endlet endlet endif endlet endif

The function follow pulls the grammar apart� decides if the end of �le marker needs to be
included �only necessary when the follow for the left hand side of the axiom is computed�� and
calls follow	 with the appropriate parameters�

Definition�
follow �a� gram�
! let prods be sel�productions �gram��

axiom be sel�axiom �gram��
terms be sel�terminals �gram��
nonts be sel�nonterminals �gram�

in
let axiom�lhs be car �sel�lhs �prod�nr �sel�productions �gram�� axiom����

clock be length �prods� � length �nonts�
in

if a ! axiom�lhs
then list �end�of�file�

� follow� �a� prods � terms � prods � axiom�lhs � nil� clock�
else follow� �a� prods � terms � prods � axiom�lhs � nil� clock� endif endlet endlet

���� IMPLEMENTING THE TABLE GENERATOR �	�

Construct Tables

The function that puts everything together is called construct�tables� It constructs the
canonical collection from the grammar� and then calls the appropriate functions� For now� it
takes the list of follow sets for the nonterminals as a parameter� should a function be found
in NQTHM for doing this� it would be calculated here� The two tables will be passed as one
parameter to the parser� consed together by the function mk�tables as discussed in Section
������

Definition�
construct�tables �grammar � follows�
! let cc be canonical�collection �grammar��

nts be sel�nonterminals �grammar��
terms be append �sel�terminals �grammar� � end�of�file��
�s be lr�
�items �grammar�

in

mk�tables �mk�actiontab ��� cc� cc� terms � �s � follows�� mk�gototab �cc� nts � �s�� endlet

Optimization

Constructing the actual tables for PLR
� turned out to be a time�consuming task� The inter�

pretive loop of the prover� �R�LOOP� needed six hours to calculate the canonical collection
alone�� Researchers at CLInc suggested compiling the functions that are executed� and this
indeed brought the time down to just under three hours� But the table generated was enorm�
ous� There were ��� states and 	
 terminal symbols and thus 		

 entries in the action table
alone� This is more than the interpreter can handle� any attempt to work with it crashed the
invocation stack� A simple optimization on one�state can be done so that the PLR

� table can
be used� All error entries are omitted here and the action lookup function is modi�ed to return
the error action if no entry can be found� The optimized table for PLR

� can then be completely
generated on a Pentium �
 KHz running Linux in just over 	� minutes�

Definition�
one�state �state� item�set � cc� voc� �s � follows�
! if voc � nil then nil

else let action be state�action �item�set � cc� car �voc�� �s � follows�
in

if action ! mk�error�action
then one�state �state� item�set � cc� cdr �voc�� �s � follows�
else append �list �a�mk�transition �state� car �voc�� action���

one�state �state� item�set � cc� cdr �voc�� �s � follows��
endif endlet endif

Definition�
action�lookup �terminal � state� actiontab�
! let action be cdr �assoc �cons �state� terminal�� actiontab��

in
if is�action �action� then action
else mk�error�action endif endlet

�And since the mean time between failure of the server at the TFH Berlin was about 	 hours at that time�
it took quite a number of tries to compute� The sta� at the center were certain that it was this computation
that was bringing down the entire network�

�	� CHAPTER �� THE PARSER TABLE GENERATOR

The optimized table for PLR
� � which can be found at the URL given on page �� only has

��� action entries� This is just over a tenth of the size of the complete table�

	�� Relevant Theorems

This section examines some of the relevant theorems that could perhaps be proven about a
parsing table generator� A major problem is that it is di�cult to formulate �rst�order theorems
about a second�order program such as a parser generator� The goal is to prove properties that
hold for all results of the generated parsers� By splitting the parsing process into a parsing
skeleton � which is the same for all generated tables and thus easier to prove correct � and
a table generator there was a better chance of being able to do this� However� only theorems
about the skeleton were proven�

It was shown in Chapter � that if the parsing skeleton accepts an input sequence� no matter
what sort of a table was used� the sequence of reductions taken in the reverse direction de�ne a
right derivation� This is because a reduction always takes place at the rightmost non�terminal
point� One would need to show that the tables� constructed by the table generator for a
grammar� lead to acceptance of an input sequence for those and only for those sequences in
the language described by the grammar� That is� the functions construct�tables and parse

in Figure ��� are such that the grammar� the input sequence� and the tree constructed using
the tables are in the relationship is�in�language�

is�in�language �input� grammar� tree� !Df
wf�tree�in�grammar �grammar� tree� �

wf�alphabet �input� grammar� �

leaves �tree� ! input �

is�wf�grammar �grammar�

Grammar Input Tree

construct�tables

�
�

� tables parser

�
�

�

� � �

�
�
�
�
�
�
���

�
�
�
�
�
�
���

R

� �

Figure ���� Correctness of a Parser

The �rst step in such a proof would surely involve the demonstration that the construction
algorithm works correctly� This proof would begin by showing that the set of items has been

��
� RELEVANT THEOREMS �	�

constructed properly and that it is a NFSA�

Conjecture � �LR�
� items NFSA� An automaton constructed from the LR��� items is indeed
a non�deterministic �nite state automaton�

In order to do this� a function connect would have to be constructed that makes the NFSA
that is based on the LR�
� items� That is� considering each item to be a state and connecting
states with transitions either by �jumping the dot� or on a nonterminal expansion� This could
be formulated in the logic as

Conjecture� ndfsap�connect�lr�
�items
ndfsap �connect �lr�
�items �grammar���

although surely quite a number of hypotheses would be necessary for the proof� Then it
must be shown that converting this to a deterministic automaton works properly� This was
proven correct in Chapter � for NFSA without ��transitions� Since the construction method
explicitly includes such transitions� and I was not able to complete that proof� this must remain
a conjecture�

Conjecture � �NFSA � DFSA� The algorithm applied to the NFSA above will produce a
DFSA�

This could be expressed as follows�

Conjecture� dfsap�generate�dfsa�with�epsilon
dfsap �generate�dfsa�with�epsilon �connect �lr�
�items �grammar����

The last step� reading the table o� of the DFSA� will have to be proven correct as well�
However� for the following conjectures� I am unsure how exactly to express this in the logic�
What is �appropriate�� When is a con�ict reported�

Conjecture � �Table Generation� The tables generated from the DFSA correspond as appro�
priate� i�e� shifts for transitions� reductions for �nal states� and the goto states needed after
reduction�

Conjecture � �Con�icts� The grammar is not SLR�
� if and only if at least one con�ict is
reported�

The key to tying both the parsing skeleton and the tables together could be expressed in
adequacy conjectures such as these � they were not provable after many years of trying� which
unfortunately is not a proof that they cannot be proven mechanically�

Conjecture � �Adequacy�

� The table indicates a shift if� and only if� there is not a handle on the symbol stack�

� The table indicates a reduction if� and only if� there is a handle on the stack equal to the
right�hand side of the production indicated in the reduction�

�	
 CHAPTER �� THE PARSER TABLE GENERATOR

� The table will indicate a reduction by the axiomatic production if and only if the input
sequence belongs to the language of the grammar� it has been exhausted by the parser�
and the stacks have no extraneous information on them�

� The goto state is always the same as the state obtained by retracing the right hand side
back up through the DFSA� and taking the branch of the left hand side of the production
being reduced�

The parser should always return a parse tree� no matter if the input sequence is accepted
or rejected� When an error action is encountered� an explicit error node with the rest of the
input as its leaves will need to be included as the outermost rightmost inner node� This will
ensure that the invariants hold even for non�accepting input� The conjecture above should be
provable with the help of the invariants on the parsing skeleton that were proven above�

Conjecture
 �Acceptance� Let G be a grammar and Tab�G� the parsing table generated by
the algorithm given� If w � L�G� then accepting �parser �w� Tab�G��� implies that the produc�
tions in the derivation are members of the productions of G and the leaves of the derivation
tree are equal to w� If w
� L�G� then error�parser �w� Tab�G��� with leaves�tree� � w and the
last branch of the derivation tree is an error branch with the remaining input at the leaves�

These last two conjectures should hold� but they may not be necessary for the proof of the
above conjectures� They are rather di�cult to specify in the language of the prover� as they
have to do with equivalence classes and viable pre�xes�

Conjecture � �Parse state� The current state during any parse denotes the equivalence class
to which the viable pre�x belongs�

Conjecture � �Shift� When the parsing table for the current state and lookahead pair calls
for a shift� then the path through the automaton de�ned by the table is a viable pre�x� but no
su�x of the path �which is exactly the symbol stack� is a handle�

No discussion of the proof attempts of these conjectures is included here� as none were
successful� This is an area in which much more work must be invested in order to have a
completely mechanically proven correct compiler front�end�

Chapter �

Discussion

This thesis has discussed the use of a speci�c theorem prover� NQTHM� to prove theorems
about program implementations for algorithms in the area of compiler front�ends� My intention
has been to demonstrate that the process of verifying a compiler front�end which incorporates
speci�cations for a language speci�ed using regular expressions� context�free grammars� and
other speci�cation techniques is possible using the mechanical theorem prover NQTHM� It was
not possible� despite an enormous investment of time and e�ort� to fully complete a proof of
correctness of such a front�end using NQTHM� although proofs for many important aspects of
the process were indeed possible�

� The process of scanning has been divided up into a number of phases� scanning followed
by a number of token transformation phases� Implementations for each phase have been
proven correct� Scanning uses a non�deterministic �nite state automaton to recognize
pre�tokens� The generation of such an automaton from a speci�cation using regular
expressions has not been proven correct here� although an algorithm is given which is
felt to be useful for such a proof�

� A parser skeleton has been implemented and many invariants proven about the imple�
mentation�

� A parser table generator has been implemented in the logic� and part of the proof �the
correctness of the algorithm that converts a non�deterministic �nite state automaton to
a deterministic one� has been conducted�

� The problem of transforming the concrete parse tree into an abstract one has not been
discussed here at all�

A major contribution of this work� beside the proofs already completed� is to explain some
of the aspects of the proof discovery process for a mathematically well�know subject area that
were unexpectedly di�cult� I hope that the next generation of mechanical provers will be able
to o�er assistance in some of these areas�

After addressing some general issues� the proof e�ort expended for each part of the proof
will be discussed in detail� Then some considerations for the use of the prover will be discussed�
the experience factor� the aspect of a prover �lore�� and a strategy for successfully using
NQTHM outside of Austin�

��� General Concerns

This section addresses some of the general concerns in conducting a mechanical proof with
NQTHM� and looks at some of the problems that contributed to increasing the e�ort�

�	�

��
 CHAPTER �� DISCUSSION

����� Why Choose NQTHM�

At the present time ������ there are a number of theorem provers available which perform
very well in areas that NQTHM has di�culties in or for which NQTHM has no facilities
for expression� At the time in which the choice of a theorem prover was made ���
��� there
was a large collection of published proofs using NQTHM for purposes similar to my goals �for
example� the short stack discussed in �BHMY
���� It was not clear at the outset that the proofs
would heavily involve set theory � something NQTHM is not really suited to use � but it was
obvious that it was extremely powerful as a rewriter �even for seemingly incomprehensible
terms� and very ingenious at using induction� Since compiling is a step�for�step process it was
thought that induction would be especially helpful for the proofs�

From the present standpoint� it would be perhaps easier to conduct compiler front�end
proofs using a system such as PVS �ORS��� ORS��� or VSE �HLS���� that borrow heavily
from the techniques used by NQTHM� but with added strengths in speci�c areas� But once
an investment of time has been made in learning to use one particular prover� one is extremely
reluctant to switch as the work done to date must be completely reformulated�

If� however� a proof is to be conducted using NQTHM� it is imperative to use PC�NQTHM
to develop the proofs� Once the key lemmata have been discovered� however� work should be
invested so that the proof will also succeed using NQTHM� This will often entail proving a
number of further minor rewrite rules� but will increase the understandability of the proof�
A PC�NQTHM proof is extremely technical and is often concerned with manipulations on
terms that are at a particular position� An NQTHM proof on the other hand will be a series
of lemmata that are understandable on a higher level of abstraction with the odd explicit
instruction on usage of a previous rule� and thus can be discussed in an expository manner�
as I have done in this thesis�

����� Termination

The implementation language of NQTHM consists of side�e�ect free� non�mutually recursive
functions which must adhere to the de�nitional principle discussed in Section ������ The
�rst problem that arises� apart from learning to think in terms of recursive functions� is the
termination question� A measure must be found for each de�nition which decreases on each
recursive call�

Many of the functions used in parsing are either mutually recursive or have non�trivial
termination arguments� It was possible to get around the mutual recursion problem by com�
bining function bodies� taking the union of the arguments� and using a �ag to determine which
function body is current� However� for the tree implementations alone was it possible to prove
interesting theorems about functions de�ned in this manner� It is not easy to conduct an
induction proof where every other call to the function in question has a di�erent tag value�

The measure for such mutually recursive functions is often an ordinal� either one of the
arguments decreases or another one does� One function used in this e�ort even needed a
three�component ordinal�

Other functions such as the ��closure or the main parsing function have termination argu�
ments which are derived from some property of a combination of parameters� The ��closure
measure can at least be easily stated by including the set of all states as an argument� and
taking the di�erence in length between the current set of states and this set of all states� The
measure for the parsing function does not use its parameters directly� but remotely� In involves
two properties of the grammar� a parameter to the parsing function� which was used to produce
the parsing table�

It is often so di�cult to deal with termination that one is tempted to just ignore it and
look at partial correctness� That is� to get on with proving interesting theorems and not just

���� GENERAL CONCERNS ���

fussy termination argument lemmata� Indeed� by introducing a clock or oracle parameter to
a function that is counted down on every recursive call� one can get even the most complex
functions to be accepted� One then needs to demonstrate that there exists a value for the clock
so that termination is by �normal� means and not by the clock running out� For the parsing
function this is possible � an upper bound can be calculated� For the FIRST and FOLLOW
sets needed for table generation� one would have to �rst generate the table to know how many
states are possible k steps away from the current state�

However� as J Moore remarked once when I was complaining to him about this� �there�s
no such thing as a free lunch�� Partial correctness is really only half of what one needs� As
many theorems as desired can be proved partially correct� but if there is no strong argument
that the functions involved indeed terminate� then the theorems are rather useless� as they may
involve contradictions� Certainly� one can keep careful track of the theorems which were proven
using lemmata that were only proven partially correct� but this is easily overlooked when the
desired results have been proven� If� however� the reason given for expending the e�ort to do
mechanical veri�cation is to have completely proven correct software� then nothing less than
total correctness is acceptable� And if this is to be done� then it seems sensible to take care of
the termination arguments �rst� especially as they might o�er insight into the proper scheme
for conducting an inductive proof�

����� Type and Implementation Problems

As a software engineer I am concerned with �nding good representations for the data structures
and algorithms in my programs� Encapsulating parts of the algorithms so that they are readable
enables me to more easily understand the algorithm� and to make necessary changes without
too much interference in other areas� I like to use named selector functions such as sel�nexts
�first�entry �table�� instead of ca�d�r towers and I am perfectly willing to assign types
to my parameters�

Encapsulation of non�recursive parts of an algorithm foiled many a proof attempt� After
proving what were believed to be the key lemmata for a proof� they were then not used at all in
further proofs� The reason was that the non�recursive functions were opened up by the prover�
and then all the lemmata proven on the non�recursive function were no longer applicable� At
times one can disable the non�recursive de�nitions� but there were often cases where I needed
the function disabled at one point and enabled at another during the same proof� This was
only possible if I managed to guess the right USE hint� or if I used PC�NQTHM to explicitly
guide the proof�

It is often the case which the implementation that �rst suggests itself to you� or the one
that is well�known from the literature� is not well suited for veri�cation� There are also at any
step in the implementation process many ways of implementing an algorithm as a recursive
function� The result can be accumulated in a parameter or returned as the return value�
There are di�erent ways of handling the termination� and there are often many di�erent ways
of stating the same thing� Each decision� however� will have a profound e�ect on what� if
anything� can be proven about the collection of functions� Experienced users of the prover
have a good �feeling� for how to express things �see Section ������ � one must implement with
the veri�cation in mind�

I often reached a point in a proof where it was obvious that a representation was causing
problems � I needed to go back� change the representation� and see if the proofs could be
replayed up until this point� Usually this was not the case� Unfortunately� one cannot �freeze�
the proof except by making copies of the proof script or speci�c theorems and commenting the
troublesome representations out� This introduces a versioning problem� not to mention the
confusion which can be introduced into a script by doing this a number of times� When one

��� CHAPTER �� DISCUSSION

representation has then been shown to be useful for one theorem and a di�erent representation
for another� and they do not quite �t together� an impasse occurs and a third representation
must be attempted that can accomodate both� At times such situation occurs because of a
simple problem such as the same name being used for two di�erent functions� but it can also
happen that a rewrite rule used for the one representation will also rewrite a portion of the
other representation� rendering other rules non�applicable�

One example that is discussed at length in the automaton proof �in Section ������ is the
implementation for the acceptance algorithm� Amazingly� �ve di�erent versions were tried
before the main theorems could be proven� Often it is the implementation that is �ugliest�
from an engineering standpoint� that is� one which is grossly ine�cient or which calculates
complicated intermediate results on every call� that is useful for a proof� Of course� one can
then prove an optimized version equivalent to the cumbersome one� but one tends to express
algorithms in a space� and time�saving way� To be successful with NQTHM this urge must be
suppressed�

A special representation problem concerns the construction of data structures and the types
of parameters� The language of NQTHM is type�less� so I often used shells to construct what
I believed were just records with typed components and proceeded to extend what I thought
was an abstract data type with functions which operated on that type�

Using any sort of restriction on components not only slows the proof down� but it can
cause obvious identity lemmata to be untrue� as my �rst attempt to use con�gurations with
components of stack type showed� As the prover does not know the type of the component
selected� since it usually does not know the type of the variable from which it is selecting�
many subgoals will be generated or hypotheses included to ascertain that the parameters are
indeed of the needed types� I call this �type checking at proof time�� as opposed to type
checking at de�nition time� One can often supply a type for a parameter� but there is no way
to express this in the logic� This type checking at proof time can only be avoided by including
an extra if into the bodies of function de�nitions and if any of the parameters are not of proper
�type� by returning an error value� This clutters the proof rather unnecessarily� and can even
lead to a situation where something that would be very easy to state using type restrictions is
extremely di�cult to state in the language of the prover �for example� the roots invariant in
Section �������

A solution to this might be to o�er �partial types� � if the prover is given a type� it
should be used� But there should be the possibility of having untyped parameters� such as the
parameter in the tree module that is sometimes a tree and sometimes a list of trees� for cases
in which a more polymorphic type is needed�

Another reason that some sort of typing would be useful is for catching silly implementation
or type errors� One can confuse cons and append� or get parameters in the wrong order� One
major problem in the automaton proof was that the parameters �state� symbol� nexts� were
in the wrong order at one place� Of course� the prover caught this and refused to prove the
theorem� but the subgoals did not suggest the reason for the problem and I spent days proving
all sorts of useless lemmata� Any language with types would have noticed that a symbol was
being used where a list was expected� and vice versa�

There are a number of theorem provers which make use of types� for example PVS and
HOL �ORS��� Gor
��� Perhaps some future theorem prover will be able to combine the strength
and the induction mechanism of NQTHM with the usage of types� I do not believe that it is
necessary� however �as in Isabelle �Pau�
� Pau��� Pau�	�� for the theorem prover to deduce the
types� That is something that the user of the system can easily note down�

���� GENERAL CONCERNS ���

����� Sets

A major shortcoming of NQTHM is the absence of set theory� Many theorems in the literature
make use of set theory in their proofs� Membership� set equality� union� and intersection are
very common� The automaton proof also needed power sets�

Not only were there misunderstandings about how the built�in functions member and union

worked and my own subsetp not really working as expected� but the arti�ces needed for
modeling sets in lists often presented unexpectedly high obstacles to a proof� The normalization
used in the automaton proof� order� caused an enormous amount of e�ort to be expended on
what should have been a completely trivial proof involving set equality�

Often� of course� full set theory was not necessary� The only thing needed for a proof was
whether or not something was a member of a list� not that it was in addition the only member�
But there were cases such as the construction of the item sets� where proper sets are really
needed on two di�erent occasions�

I was using one of the set libraries at one point in a proof when I noticed that using the
library was causing di�culties � all sorts of silly subgoals were being generated just because
there were rewrite rules around that matched� This exploded the proof search space� It was
possible to carry on by working in what the researchers at CLInc call �Bevier mode��� where
all functions are disabled and then only the ones needed are enabled� This works well� but I
am often too optimistic to work in this way� I tend to hope that the prover will �see� what it
needs itself and do not want to keep inspecting subgoals to see what additional lemmata need
enabling� Also� when a library is used which someone else has written� it is not immediately
obvious which rules are available� Some such tool as the show�rewrites in PC�NQTHM would
be useful� although one would like to see it show all the rewrite rules de�ned on the current
major term� not just the ones that can be used at this moment� That would help one to see
the directions that the proof can take� If this could be rewritten to that� then this other rule
will work�

In a private communication just before the completion of this manuscript� Natarajan
Shankar� one of the authors of the theorem prover PVS� sent me his proof of the automaton
equivalence� Since he has full set theory� existential quanti�cation and typed parameters at
hand� the entire proof �without ��transitions� however� collapses to just one induction� the one
Rabin and Scott actually used in their proof�

����	 Axioms

It is very tempting to introduce axioms into a script when the prover just will not assent to
an obvious truth� It is also exceedingly dangerous� It is very easy to write axioms that are
inconsistent or� because they are missing a hypothesis� are just plain wrong� NQTHM is very
good at using inconsistent axioms to prove anything� Just about every time when NQTHM
would �get� a proof immediately� it was because I had inconsistent axioms�

The problem with axioms is not in the major statement of the axiom� but rather in the
�ne points� the variables upon which it is de�ned� whether it is actually true for degenerate
cases� and so on� Axioms are quite useful� however� for probing a proof� if the main theorem
can be proven on the basis of the axioms� then one must only prove the axioms� and the proof
is �nished� But this step is crucial � the elimination of axioms must have a high priority� If
for some reason this cannot be done� the very least one can do� after convincing oneself that
the axioms are indeed correct as stated� is to attempt to prove some �sanity check� lemmata�
These are either ones which must fail �or else there is a contradiction in some axiom statement�
or must succeed �because they concern an obvious property of functions obeying these axioms��

�After the methodology and a set of macros which support it� which were developed by William R� Bevier�

��	 CHAPTER �� DISCUSSION

����� Existential Quanti�cation

As mentioned a number of times in this thesis� many theorems in mathematics make use
of existential quanti�cation� often without stating it explicitly� Even when a proof based
on an existential quanti�cation has been found� one still has to demonstrate by means of a
witness function that such a thing actually exists� Although NQTHM����� now has Skolemized
existential quanti�cation� I did not use it because I could not come up with a statement for
the existential quanti�cation I had in mind that would be useful for proof� This is surely just
a �training problem�� I would hope that a number of di�erent worked examples of the use of
this technique would be available� since existential quanti�cation is such an important part of
predicate logic�

����� Second Order

For the most part having �rst order logic available for proof was su�cient� There are three
areas� however� where having some sort of second order tool would have been helpful�

The �rst area was in the scanner� One of the main theorems for split was that the longest
accepting pre�x was split o� at every call� The proof would not have been as complicated if
a parameter could have been a predicate P on character sequences� The function that �nds
the longest pre�x will �nd the longest pre�x with property P� no matter how complicated P is�
Thus the problems associated with correctly implementing a function to determine the P�ness
of a sequence could then be separated from the problems associated with �nding the longest
pre�x with such a property�

The second area was in the parser con�guration where there were three stacks� It would
have been useful either to be able to type the stack elements� or to have a predicate stack�of
that takes a stack and a recognizer as a parameter� With just �rst order logic� di�erent
functions stack�of�trees� stack�of�symbols� and stack�of�numbers had to be de�ned�
and then proofs of the interactions of each with other functions such as from�bottom had to be
proven� Of course� since the functions were practically identical� the proofs could be �re�used�
by cut)paste)rename�

The third area will surely be relevant for the parser generator proof� Since the goal is to
prove properties of the results produced by running the result of a parser generator and not
properties of the �rst result directly� being able to use some sort of second�order argument
would be useful� I am not concerned so much with speci�c properties of the parser which is
generated� as long as its results have the property of obtaining a proper derivation for an input
token sequence�

����� Script Writing

The editor EMACS� written by Richard M� Stallman from the Free Software Foundation
�Fou�	�� o�ers a good environment for using NQTHM� as one can have the prover in one bu�er
and the proof script in another and as many other bu�ers open as are needed� There are macros
available for easily submitting events to the prover�� and one can also program functions in
Lisp to gain information about the proof� There are� however� still di�culties involved�

Trying to keep a proof script replayable is very di�cult� as it is never developed top�down�
One is constantly working �in the middle� of the script� One writes down the de�nitions
and then the theorem to be proven� and when the theorem cannot be proven� one moves up
and tries to prove some intermediate lemmata� When they do not prove one can move up
again� or switch to another intermediate lemma� or add a hypothesis� or completely restate the
theorem to be proven� It is hard to keep track of which lemmata were the key ones� which have

�nqthm�mode�el is available at http���www�tfh�berlin�de��weberwu�nqthm�nqthm�mode�el

���� PROOF EFFORT ���

actually been proven and which were false starts� etc� I developed a commenting technique for
remembering the status of each event in the script� but often enough I would forget a comment
and then� when cleaning up the script� delete an important lemma� I also kept a �breakpoint�
in my scripts� a term �high tide�� that divides proven and useful theorems from non�proven
or dubious theorems� The script can then be submitted to the prover and will stop when the
high tide term is encountered�

Clean up is also a di�cult task� I do not give the intermediate lemmata meaningful names
until they have been shown to be useful� Then I try and move the lemmata up to be close
to their de�nitions� for example a theorem about the interaction between foo and append

should be near the de�nition of foo� But this can cause previously successful proofs to become
unprovable� as a rewrite order is now reversed or even because a name change in the theorem
will cause it to be considered at a di�erent point in the the process�

Some sort of hypertext�oriented� graphical interface would be desirable� That would make
commenting out useless bits of a proof easier� and one could attempt various paths through
proven theorems by way of links� I have tried to partially realize this by breaking the proofs
up into theory bits �for example� grammars� lists� trees� sets and such�� These theories are
enabled at the start of a portion of a proof kept in a separate �le� much like declaring the
needed packages in an Ada program by using a with�clause� If a theory is not in the data base
at the moment� the prover will halt at the enabling statement and the initialization �le can be
amended to include the theories needed� It would also help in developing a proof to be able to
obtain a list of rewrite rules de�ned on a term at the click of a mouse� or to have a graphical
proof tree showing the lemma dependencies such as in the Veri�cation Support Environment
VSE �HLS�����

Another thing that would facilitate a proof e�ort would be a sort of failed proof post�
mortem that would show how the subgoals were put together and which lemmata were tried
and did not help� PC�NQTHM o�ers some of this� but it seldom o�ers the exact same case
split as NQTHM� A sort of �rewrite movie� that would step through the rewritten terms would
also be helpful for cases such as

�LONG�INVOLVED�TERM�I�THOUGHT�WAS�CORRECT �����

opens up using REWRITE�	� ������� REWRITE���� ��� many names here�

obviously� to

�SURPRISINGLY�SHORT�FALSE�TERM ����

in which a perfectly logical term that seems to be correct �obviously� opens up to a clearly
false one�

��� Proof E
ort

I want to try and give an overview of the e�ort involved in each individual proof step� and
discuss some of the false starts involved in each� The time invested is di�cult to judge� as I
moved to another city for personal reasons a year and a half into this thesis work� There I
could only work about two days a week on the proof� and for the past three years I have been
unable to devote more than a day a week to the proof� This cripples work immensely� because
I have to �rst remember where I was the last time before continuing� The �nal push for the
parser theorem came when I was able to spend two weeks full time on this work after having
spent six years on and o� working with NQTHM

��� CHAPTER �� DISCUSSION

����� NFSA � DFSA

The amount of time necessary for completing the proof of automaton equivalence was enormous�
I spent six weeks in the summer of ���� at Computational Logic with the intention of proving
�� theorems correct in order to show that an implementation of a parser generator was correct�
The �rst four weeks ended up being devoted to learning more about how the prover works
and proving exercises not directly related to the proof e�ort� The last two weeks ��� full
working days� were devoted just to the automaton equivalence proof� William Young worked
occasionally over one of the weeks� proving a version using the existential quanti�cation event�

I spent another �� days back in Berlin working on the proof� As things began to fall
together� the speed of the proof e�ort picked up� One gets more accustomed to proving things
the NQTHM way on paper �rst� formulating axioms to decompose the proof� and repeating
on the axioms � one learns to resist the temptation to prove something just because it looks
easy to prove� One must constantly ask � is this on my critical path� If not� it is not worth
wasting time on it�

All in all there were many� many theorems proven that were eventually determined to be
irrelevant� The �nal version� with �� de�nitions and �� lemmata� does not contain even a
quarter of the lemmata proven during the course of the attempt� This makes it hard to �nd
a measure for the di�culty of a proof� especially as this is intricately tied to the prover used�
In Shankar�s proof using PVS on one of the automata equivalence theorems� he used seven
type de�nitions� �ve function de�nitions and just one lemma that was proven in six steps by
rewriting and induction�

����� Scanner

Split

I �rst spent quite a while attempting to implement a scanner generator that would generate
a scanner from a regular expression de�nition� After giving up on that �and unfortunately
the time spent on that was not logged�� I worked on the proof of an interpreting scanner that
interpreted regular expressions over an eight month period� This was not successful� and the
scanner proof was laid to rest while I worked on parsing� Two years later when I decided to
revive the scanner I was now able to completely redo the de�nitions and lemmata in just ��
hours over four days� There was of course an error in the previous implementation� plus after
concatenation was implemented wrong� So the prover had actually been right when it refused
to prove my �trivial� lemmata#

Even this proof turned out to be wrong� as one of the predicates in the speci�cation was
too strong� If the scanner returned a pre�x it was a recognizing pre�x and it was longest
according to the predicate statement� but there could have been a longer pre�x� as discussed
in the example in Section 	����� Completely redoing the scanner to use automata needed �

days to discover the proof and one to clean up�

Token Transformations

These proofs were extremely time�consuming� something that cannot be seen in the sleek and
simple proofs presented in Section 	���

It was very di�cult to formulate the speci�cation for the indentation removal transforma�
tion� and even after a good expression for the desired relationship was found� it was even more
di�cult to prove that an implementation of the indentation changer corresponded� At least four
completely di�erent methods of implementing the indentator or the correspondence predicate
were exhaustively tried� and over �

 lemmata were either proven or attempted without being
able to prove the main theorem�

���� PROOF EFFORT ���

One version that seemed to prove turned out to have a contradiction in the hypothesis�
This was discovered much later� when a similar proof was being attempted and I wanted to see
how exactly that one had gone through� Studying the output of the prover showed that indeed
no induction was done � just rewriting using the de�nitions from the hypothesis and none of
the intermediate lemmata had given the proof� However� by this time I was versed enough in
the prover to �x the problem in a day�

The version that �nally worked separated the concerns of the indentator on a slightly more
abstract level than had been tried before� and exposed in doing so the problem � since I was
using the integers library I had two representations for zero� � which would produce a SI token
and �minus �� which would produce nil�

The transformation of integers from a positional notation to a number representation also
had an error which I would call a �glue error�� The proof depended on each character in the
positional notation being a digit� This had been expressed as numberp in the speci�cations�
and the proofs went through smoothly� However� the positional notation did not consist of
numbers representing digits but of the ASCII values for the digit characters� and of course
both are numberps� I had believed that a previous transformation function had taken care of
this� and since each transformation had been proven correct together� it was a surprise to see
that they did not work together as expected� I ended up having to split this transformation
into an ASCII�to�digit converter and then the positional notation converter� This� too� took
only a day once the problem was recognized� The proof e�ort for the transformation functions
is given in the table below�

Function De�nitions Lemmata Days Work

toktrans� � � �
toktrans� � � �
toktrans� � � �
toktrans� �� �� ��
toktrans� � � 	
toktrans� � � �
toktrans� �current version� �
 �� �	

From the old proof scripts still in my account I found ��� discarded lemmata for the
indentator �toktrans�� proof alone�

����� Parser

The parser proof itself has turned out to be at least an order of magnitude more di�cult and
time�consuming as was expected at the outset of this research� It is hard to pin down the
reasons for this � once the proofs are worked out� they are simple�

More than once a failed proof demonstrated that the implementation was incorrect� Ex�
amining a subgoal discovered a degenerate case for which the theorem did not actually hold�
The proof of the leaves invariant in Section ����� was such a case� If the parsing table were
to be in error and demand a reduction that was larger than there were trees on the tree stack�
and this reduction happened to be the axiomatic production� then the input would be accepted
without a parse tree being constructed correctly�

The proof of the nodes invariant �Section ����	� was the last one attempted before termin�
ating the proof e�ort� It demonstrated a major problem with the entire method of invent�and�
verify� deep into the proof I discovered that an unfortunate choice of representation prevented
the proof from going through � it was not possible for the prover to see that a left hand side
of a production could never be a token� According to the speci�cations� the left hand side is

��
 CHAPTER �� DISCUSSION

a non�terminal symbol� But I cannot state this� and thus a left hand side is not type restric�
ted and could indeed have any type� including being a token� There might be a possibility
to completely redo the way in which a node is selected for use in constructing a tree� but
this would entail an enormous amount of work� and even then one cannot be sure that this
new representation would not itself have some subtle degenerate case that prevents the proof
from going through� Unraveling the proof and redoing all the steps� including the brittle PC�
NQTHM ones� will have no change on what the parser is actually doing� It just changes how
the trace elements of the con�guration are constructed to help convince us that the parser
works correctly� So the proof was abandoned at this point�

The parser is not exactly e�cient� In order to have any hope of proving something about
the parser� it had to explicitly construct many intermediate results� and the scanning that must
precede the parsing has an exponential run�time behavior� Obtaining an actual parse tree from
this for more than a trivial program is a �nite task � it actually terminates� but is not useful�
A �
 character program in PLR

� took almost an hour to run� a �� character program almost �
hours� I have not dared to try and parse Bettina Buth�s �
�

 character example program�

using all of the PLR
� constructions# Many of these are� of course� blanks in indentations� once

the scanner is �nished� the parsing itself should not take that much time� Thus� optimized
scanners and parsers must be implemented and proven equivalent to the ones given here� so
that it is possible to actually use such programs�

����� Parser Generator

There were �� de�nitions formulated about a parser table generator� It took �ve days to get
the de�nitions accepted and for the resulting parsing table for PLR

� to be exactly the same as
the one generated by yacc� No theorems were proven� but rather� it was demonstrated that it is
possible to implement such a table generator in the restricted language of the theorem prover�
The main problems were �nding representations for the item sets� constructing the recursive
functions� and proving their termination � usually with the bludgeon of an explicit count�down
clock� The construction of functions for first and follow was eventually possible with the
help of the clock� but from the looks of the functions I do not believe that I will ever be able
to prove anything useful about them in this form�

The hardest part in constructing these functions had nothing to do with a proof attempt�
Even though the construction functions are given in many books on parsing� I could not see
why exactly this method worked � but I had to understand this in order to formulate a predicate
for the method working correctly� Only after I had constructed the LR��� table for PLR

� by
hand� did I actually see why the table looked as it did � just studying the example expression
grammar had not been enough�

��� Considerations of Prover Use

In this section I want to present some of the considerations on the use of NQTHM that I have
collected over the years� After discussing the �Matt Factor�� a list of some of the prover lore
gleaned from experienced proof directors is presented followed by a strategy for using NQTHM
outside of Austin�

�http���www�tfh�berlin�de��weberwu�diss�events�pl
r�large�pl
r
�The automaton needed to be drawn on a �m x ���m piece of packing paper� as there are more than ���

states�

���� CONSIDERATIONS OF PROVER USE ���

����� The �Matt Factor�

One of the keys to successful use of NQTHM� apart from a good knowledge of logic and formal
proof� is experience in using the prover� Since there are so very many ways of expressing the
functions and theorems� it is very di�cult for a beginner to know exactly how to begin and
how to construct a proof for a theorem that NQTHM cannot get on its own�

I coined the term �Matt Factor� to describe how well the person attempting the proof
is acquainted with the system� Matt Kaufmann� a CLInc researcher who added on the PC�
NQTHM interface� knows all of the nooks and crannies of NQTHM� along with being a logician
by trade� In working on a little exercise� I found that Matt could develop the proof in � minutes�
Yuan Yu� who wrote his thesis on the proof of a Motorola chip with the prover �BY���� reported
needing only a few hours to solve the same exercise� I worked for � days before giving up� as
I could not see what sort of lemma the prover needed�

So when trying to measure how much time is needed to conduct a proof� the experience
of the proof conductor � theorem prover author� NQTHM user working in Austin� NQTHM
user who has visited Austin� or person who has just read the handbooks � must be taken
into consideration� as the time needed increases exponentially with the distance from Austin�
so to say� There is an immensely steep learning curve involved in learning to use the prover
e�ectively� although this problem is not only with NQTHM but with any prover� Some attempts
are being made to construct exercises or to write up model proofs for teaching the use of the
prover� but I do not think it will be possible to quickly train engineers to use NQTHM to
prove non�trivial theorems� It is not impossible � many have learned how to use it� especially
since the handbooks ��BM

� BM���� are so excellent � but I do not believe that NQTHM will
be the VisiCalc that brings mechanical theorem proving to the masses�

����� The Lore of the Prover

When one observes an experienced proof director at work and asks� �Why are you doing this
that way��� one often hears good reasons for doing so� At the University of Texas in Austin
and at Computational Logic there is a vast body of such information that is mostly in the heads
of the researchers� Boyer and Moore have some helpful hints in their handbook �BM

�� but
many of these reasons are passed from researcher to researcher over co�ee or when working
together on some problem� I use the term �lore� for this oral history of successful prover usage�
and o�er the lore gleaned from my notebooks�

� One must be very careful in naming functions not to suggest through the name a property
that is not actually implemented in the function�

� Avoid type�restrictions in shells at all costs# The equality axioms will explode and the
prover will disappear on you� Instead� permit everything� then write a separate predicate
that checks the types of each �eld� Shells were not written to provide abstract data types�
However� it is good to use shells� as the destructor and constructor functions are not
expanded to the internal structure in proofs� providing better reading of the proof�

� An exasperating corner is that the prover will not open up recursive de�nitions or prove
subrules about a hypothesis so that it can see that the hypotheses are contradictory�
One can use PC�NQTHM to direct the contradiction proof� try some hints� or try and
formulate a rewrite rule that demonstrates this contradiction�

�This is the subsequence exercise that is used in the leaves invariant proof� This and other ex�
ercises can be found in a selection of
Etudes�� for learning to use NQTHM that I�ve collected at
http���www�tfh�berlin�de��weberwu�nqthm�etudes�html

��
 CHAPTER �� DISCUSSION

� Never use a lemma that has �CAR x� or �CDR x� as a subterm of the term to be rewritten�
as the destructor elimination will never present a term in that form to the rewriter�

� Separate concerns# It is often easier to prove two separate functions than to do two
things at once� If you must have a single function� break it up� prove the composition�
and then prove the equality of the single function to the composed functions�

� To prove a property about a CONS� prove the property for the element to be consed� and
then for the list �P �CONS �A B��� � �AND �P A� �P�for�all�in�list B��

� If you �nd you cannot prove a lemma �IMPLIES P �EQUAL X Y�� because it rewrites a
variable� prove �IMPLIES P �EQUAL �EQUAL X Y� T�� instead�

� It is often better to return the parameter itself on a base case in a de�nition such as �IF
�NLISTP BAR� BAR ���� instead of the way I used to do it �IF �NLISTP BAR� NIL

����� This will save the prover from generating subcases for when BAR is not a list and
not NIL� i�e� some other literal atom�

� The main question to ask if the prover cannot prove something �obvious�� Did it choose
the right induction scheme� When it picks the wrong one� it usually blows the proof
attempt� Some people have gotten into the habit of always giving the prover the appro�
priate induction hint ��INDUCT �FOO A B���� This also results in a slightly faster proof�
as it keeps the prover from wasting time by attempting to do the proof without induction
before giving up and using induction on the original goal�

� Give precedence to an unconditional rewrite rule� that is� one which has no hypotheses�
Only when they get really messy should a condition be pulled out and the rule split� For
example� �EQUAL FOO �IF BAR A B�� is more useful than the two rules �IMPLIES BAR

�EQUAL FOO A�� and �IMPLIES �NOT BAR� �EQUAL FOO B�� �

� If the prover can prove your main theorem right away� something is wrong� Either
you have a contradiction in the hypotheses� contradictory axioms in the data base� the
theorem is vacuously true because some function always returns nil no matter what
parameters are o�ered� or else the theorem is restating something already in the data
base�

� It is pointless � although very tempting � to try and prove lemmata in the hopes of them
being useful� One must demonstrate the usefulness of a theorem in the manner stated�
and then attempt to prove it� The theorem prover o�ers a mechanism with ADD�AXIOM

to add a rule to the data base without proof� In this manner� one can check if the rule
is indeed on the critical path of the main theorem proof� The interactive proof checker�
PC�NQTHM� is absolutely necessary for discovering exactly what kind of lemmata might
be useful� At some point during the investigation� one tends to �nd an obvious fact was
missing as a rewrite rule in a speci�c form� i�e� with appropriate hypotheses�

� Avoid huge case splits� If you put rules such as these in the proof script in this order�

	� �EQUAL A �IF P B C��

�� �IMPLIES P �EQUAL A B��

�� �IMPLIES �NOT P� �EQUAL A C��

the prover will try � �rst� then � �which can be relieved if P can be established or
disproved�� If neither is the case� then the unconditional rule will �re� causing a case

���� CONSIDERATIONS OF PROVER USE ���

split� This will increase the likelihood of them being useful� I tended to have these rules
in my scripts� but in the order �� �� �� because that was the order in which I had proved
them� and I often wondered why they were not being used as I had expected them to�

� If you are having trouble with a main theorem� look for alternate statements of correctness
which might be more easily provable�

� When using lexicographic ordering� add one to each element of the ordinal measure so
that they are never zero� because the elements must be positive�

� If you have a sort of equivalence class partitioning for a value in that it can either be a
member of class A or of class B or of class C� express your functions so that all members�
that are not in A or B� are in C � this will keep the prover from asking� Well� what if X
is neither an A or a B or a C�

� Concentrate on the full picture� get your speci�cations down and do the proof by hand�
and work through a small example� Then throw everything away and do it again for the
larger case�

� If you have to use a clock in a de�nition� you will need a predicate to recognize when
the function has been halted because of insu�cient clock ticks� Then you can formulate
your theorems �IMPLIES �NOT �HALTEDP �STEP N��� �����

� Sticking in constants ruins inductions� Turn constants into variables when they are
participating in an induction� That is� prove a property for all X and then show by
rewriting that it holds� of course� for ��

� Watch out for proper list problems# nil is not a list# You can either make everything a
PLIST with nil in the last cdr� or you can always identify nil and all literal atoms as
being representations for the empty list�

� Equality substitutions are only good when they are thrown away after use�

� If you cannot prove a theorem� look for a more general statement of the problem to prove�
Then try and show that the theorem in question is just a special case of the general one�

� Check with R�LOOP before you start proving that your functions actually work on a
few test cases� Nothing is more frustrating than trying to do proofs on incorrectly
implemented functions� or discovering that all theorems are vacuously true because all
functions just return nil�

� Theorems about LESSP are not stored as rewrite rules but as linear arithmetic rules�
That can make them work not as expected� as they are examined for use at a di�erent
point in the proof process�

� Even though NQTHM has a
 form FOR� stay away from it� It is very di�cult for
beginners to prove anything useful about functions using FOR unless you have a deep
understanding of how it actually works�

����� A Strategy for Using NQTHM Outside of Austin�

NQTHM is no di�erent than any other theorem prover in this regard� the most successful
users of the system work closely with the people who wrote the system� All the people I have
spoken with who have used NQTHM successfully on non�trivial proofs have either spent time
in Austin themselves� or worked very closely with the ��rst�stringers�� the researchers who

��� CHAPTER �� DISCUSSION

wrote their dissertations with Boyer and Moore using the prover� How should one go about
using NQTHM from a remote location such as Kiel or Berlin�

� Have a solid background in mathematical logic�

� Read both books by Boyer and Moore�

� Understand your problem domain thoroughly�

� Go to Austin or pay one of the researchers to come to you for at least a week� if not
more� and do lots of exercises using the prover�

� Re�read the second book ��BM

�� and look through the examples directory delivered
with the prover for similar things to what you want to do�

� Use PC�NQTHM to discover proofs� then convert these to less brittle NQTHM proofs�

� Never proof hack# Always convince yourself that the current proof is on your critical
path�

� Allow plenty of time�

� Keep in contact with the experts and use forums such as the nqthm�users mailing list�

for advice�

And above all� do not work alone� as I did� Discussing proof steps with other people is
the best way to success� Laurence Pierre in Marseilles� France used NQTHM in a team to do
hardware proofs �Pie�
� Pie��� Pie�	�� Of course� she also spent time in Austin� but they have
been very successful in their work because they are a team�

��� Summary

Can mechanical veri�cation be used for �real� software projects� Despite the di�culties en�
countered in this part of the veri�cation project I believe it can � even with NQTHM � but
an intensive training program is necessary to learn to use it and to understand how it proves�
Access to an expert is vital� and I wish to thank Bill Bevier� Matt Kaufmann and Bill Young
and the others from CLInc� who gave me enormous amounts of support during my visits in
Austin and by electronic mail�

It is vital for a veri�cation e�ort to go hand in hand with the implementation of a system�
There are so many design decisions that might seem to be of little consequence� but that can
have an enormous e�ect on the proof� Even doing hand proofs in parallel to the implement�
ation and then attempting to do the mechanical veri�cation afterwards is no assurance that a
quick mechanical proof will be found� It is so easy to use things like set theory or existential
quanti�cation in a hand proof which are extremely di�cult to use in a mechanical proof using
a prover like NQTHM� The most important requirement for a mechanical veri�cation� in my
opinion� is that the implementation and the veri�cation be done in parallel� not in sequence�

It would be helpful if there were a �theorem prover clearing house� that classi�ed the the�
orem provers available as to the types of problems that they are suited for� There should be
benchmarks demonstrating the proofs for speci�c problems as formulated for the di�erent sys�
tems� and other examples of non�trivial proof types that demonstrate the respective strengths
of the systems� With such a body of comparative information available� it would be easier to
pick a theorem prover that promises the most utility for the problem at hand�

�nqthm�users"cli�com

��
� SUMMARY ���

But industrial users should be aware that even proven correct software will contain errors�
There can be errors in speci�cation� such as the over�speci�cation in the is�indentation case�
there can be speci�cation mis�matches between the di�erent portions of the system� and there
can be any number of representational di�culties that fall through the mesh of a proof� For
example� if a selector function is so improperly implemented that a constant default value is
always returned� this will probably not be caught and will cause most of the theorems� which
were proven using the function� to be vacuously true� Proving software correct does not free us
from the responsibility to test� since we must also test the assumptions about the environment
which our systems make�

But proving software to be correct can help to �nd some of the more elusive errors in our
systems� an important aspect especially in the area of safety�critical systems� where it is abso�
lutely necessary to have the software as error�free as possible� It is necessary for the tools for
doing program veri�cation to become much easier to learn and to use� so that unsophisticated
users can apply veri�cation to portions of a program� just as today they use a debugger to
investigate the behavior of variables between program statement executions�

And I do believe� contrary to Fetzer�s opinion� that one day program veri�cation will be
a generally applicable and completely reliable method for guaranteeing program performance�
NQTHM will not be the veri�er of choice� but whatever system that will be is sure to have
learned how to do induction proofs from NQTHM� I hope that this work may contribute in
some small way towards reaching that goal�

Acknowledgements

I am grateful to Prof� Dr� Hans Langmaack for giving me the opportunity to do this research�
and for his immense encouragment and support throughout the years� Even though I moved
��
 km away� he was always willing to read something I had written or discuss at length some
aspect of this work� I also wish to thank Prof� Dr� Robert S� Boyer for his patience and
insight � when I couldn�t see the forest for the trees he was able to see a way through � and
his insistance on attention to details�

I made great strides forward during my visits to Computational Logic� Inc� The researchers
there � especially Bill Bevier� Matt Kaufmann� J Moore� Larry Smith and Bill Young � had
open doors� and gladly discussed their work and mine with me� The supportive environment
at CLInc is so conductive to research and scholarship� I am happy to have been able to work
there�

Many thanks also to my patient and long�su�ering colleagues and friends� especially Bettina
Buth� Karl�Heinz Buth� Maritta Heisel and Thomas Santen and the entire ProCoS group� for
fruitful discussions and help in proof�reading� and to Summer Long for editing my germanized
English�

I spent most of my time on this thesis working in public computer rooms at the Free
University of Berlin and the Technical College of Berlin �TFH�� Schlo� Dagstuhl gave me the
opportunity to spend two full weeks in residence with a computer next to my bed� an excellent
library across the hall and more great food than was good for my waistline� Instead of writing
about why I could not prove anything� I ended up actually proving useful theorems and was
able to discuss the proofs with the researchers attending conferences there�

Above all� I thank my husband� Dr� Reinhold Wul�� for his unending patience and encour�
agement during this entire endeavor� It would not have been possible without him� He and
our son Rade have often had to do without me�

This book is dedicated to the memory of Kerstin Maa�� I stayed with her and Eckhard
Falkenhagen whenever I was in Kiel to discuss my work� She was killed in a car crash the day
I completed the copy for printing� We miss her terribly�

Index

��closure� 	�

PLR
� � Action table� ���

PLR
� � Canonical collection� ��

PLR
� � Goto table� ���

PLR
� � Grammar� ���

PLR
� � LR�
� items� ��

a�mk�transition� �	
� �	�
accept� �	� �
� ��� �	� ��� �
� �	

accept�all� �

accept�all�all�accepting� �

accept�is� ���
accept�� ��� �
� ��

accepting� ���� ���
accepting�pre�x�is�longest� �	� ��
accepting�regular�expressions� ��� �

accepts� 	�
accepts�lop� �	� �

accepts�� 	�� 	�
accepts�� 	�
action�lookup� �
�� ��
� ���� �	�
add�axiom� ��

alistp� ��� ��
all�accepting� �	� ��� �����
all�but�axiom� ��
all�in�vocab� �
�

all�leaves�in�frontier� ��
all�member� �����
all�nfsa�transitions� 	�� 	�
all�pre�xes� �	� ��� �����
all�pre�xp� ��� �

all�pre�xp�all�accepting� ��
all�pre�xp�all�accepting�all

�pre�xes� �

all�pre�xp�all�pre�xes� ��

all�regular�expressions� ��
all�regular�expressions�for�state� ��
all�relative�tokens�good�
�
all�rights�terminal� �
�

all�subbags� �
� �
� ��� ����
� 	�
alphabet� ��� ��� �
� ��� �
� ��� 	�
append�append� ��

append�elimination� ��

append�from�bottom�pop�n� ��� ���
append�from�bottom�push� ���
append�leaves� ���
append�left�id� ��� ��
append�nil� ��� ��
append�remove�common�pre�x� ��
ascii�nine� �	
ascii�to�digit� �	
ascii�to�digits� �����
ascii�zero� �	
assoc� ��
axiom� ��� ��

base� �����
Bevier mode� ���
Bevier� William R��
�� ���
bl�
��

Boyer� Robert S�� �
Bundy� Alan� ���

canonical�collection� ���� �	�
car� �

car�append�list� ���
card� �	� ��
cc�name� ��
cdr� �

character class� 	�
clock� ���
closure� �������
closure�step� ���
Cohn� Avra� �
collect�indents� ���

�
�
collect�indents�nlistp� ��
collect�values� �	� ��� ��
collect�values�cons� ��
collection� ��

comments� ��� �

commutativity�of�plus� ��
commutativity�of�times� ��
compact�
�
completed�items� �	
� �	�
con�guration� �
�

��	

INDEX ���

con�guration�induction�step
�reduce� ��

�shift� ���

connect� �	�
consl� �

construct�dpath� 	�
construct�item�set� ��	� ���
construct�tables� �	�
continuation removal� ��
continuations� ��
convert� ��� ��
convert�back� �	� ��
corresponds� ��	

de�nedp� ��� ��
de�nedp�means�equal� ��
defn� �

delete� �	�� �		
deriv�rule� �
�
derivation� �
�
determine�key�words� �
� ��
deterministic�table� ��� ��
deterministic�table�append� ��
deterministic�table�dfsa�table� ��
deterministic�table�dfsa�table�

for�symbol� ��
for�symbol�� ��

deterministic�transition� ��
dfsa�accepts!�nfsa�accepts� ��
dfsa��nal�states� �
� ��� ����

dfsa��nal�states�member� ��
dfsa��nal�states�subsetp� ��
dfsa�next�state� ������ �����
dfsa�next�state�distrib� ��
dfsa�next�state�union� ��
dfsa�next�transition� ��� ��
dfsa�starts� ��� �
� 	�

dfsa�table� ��� �
� ��� ��� �
� 	�
dfsa�table�for�symbol� ��� ��� ��� ��
dfsap� ��� �	�
dfsap�generate�dfsa� ��
dfsap�generate�dfsa�with

�epsilon� �	�
di��cycle� ���
��
�
di��cycle��
��
�
di��cycle��listp�
�
di��cycle��nlistp�
�
di��cycle��not�numberp�
�
digit�to�ascii� �	
digit�zero� �	

digits�to�ascii� �	� ��
discard� �

discard�does�not�disturb�non

�discards� �

discontinue� ����

discontinue�car� �

disjoint� �	
do�not�push� ��
do�not�push�theorem��� �

domain� ��� ������
�� ��
dot� ��� �	� ��	� �����	

dot�sym�in�item�set� ��

EMACS� ��	
emit�
��
�
emit�relative�
�
emit�theorem�
�
emit��
��
��
��
�
emit��theorem�
�
empty line removal� ��
empty�action� �	�
empty�item�set� ������
� �	
� �	�
emptystack� �
� ��� ��
� ���� ���� ���
emptytree� �
��

� �
�� ���� ���
end�of��le� ��� �	� �
�� ���� ���� �		� �	�
epsilon� 		� �	���		
epsilon�closure� 	�� 	�
epsilon�closure�dfsa�identity� 	�
epsilon�step�all� ���
equal�item�set� ���� ���
equal�length�
� ��� ��
equal�order�subsetp� ��
equal�plist� ��� ��
equal�plus�
� ��
equal�times�
� ��
error� ���� ���
event� �

exists�prod�� �	�� �	�

�nal�states� 	�
�nals� ��� �
� �	� ��
�nd�label� ��
�nite state automata� �

�rst� �	�
�rst�item� ���� ���� �	
� �	�
�rst�list� �	�� �		
�rstn�
	
follow� �		
follow�� �		
from�bottom� ��� ���� ��	����
from�bottom�push� ��

��� INDEX

frontier� ��� �
�� ���� ���� ��

frontier�branches�is�leaves� ��

frontier�leaf�rewrite� ���
frontier�tree�is�leaves� ���
fsa$� ��� �

fsap� ��� ��� ��� �	� ��� ��
fsap$� ��

generate�dfsa� �
� ��� �	� �
� ��
generate�dfsa�with�epsilon� �	�
get�prods� �
�� �
�
Gloess� Paul� ��
glue��
�
glue��
�
goto�function� ��
� �	�� �	�
goto�lookup� �
�� ���
grammar� ��
great�parsing�step�invariant� ��

ground zero� ��
Gypsy� �

half� ���

halve� ���

halved�listp� ���

helper� �

HOL� ���
Horner method� ��
how�much�
	

identi�ers� ��
indent�free�
��
�
indent�free�append�
�
indent�free�cons�
�
indent�free�emit��
�
indent�free�indentator�
�
indent�free�make�list�
�
indent�free�relative�to�ni�si�bi�
�
indent�positions�preserved� ��
indent�positions�preserved�halve� ��
indentation removal� ��� �
�

indentator�
��
�
indents�halved�

index� ��
input� ��� ��
input�levels� ��
insert�dots� ��	
integer�convert� ��� ��
integer�tokens�well�formed� ��
intersection� ��� �	� ��
inv�reductions� ���
inv�reductions�reduce� ���

inv�reductions�shift� ���
inv�roots�reduce� ���
inv�roots�shift� ���
inv�rt�sent��� ��

inv�rt�sent���reduce� ��

inv�rt�sent���shift� ���
inv�stack�size� ��	
inv�stack�size�reduce� ��	
inv�stack�size�shift� ���
inverse�� �	
inverse�� ��
is�action� �	�� �	�
is�completed�item� �	
� �	�
is�derivation�in� �
�
is�empty� �
� ��� �
�� �
�� ��

is�grammar� �	
is�in�follow� �	�
is�indentation� ��� ���
��
��

is�integer�token� �����
is�kw�indentation� ����
�

�
��
�
is�leaf� �
� ��� �
�� �
�� ���
is�leaf�in� �
� ��
is�ni�si�bi�
�
is�relative�
��
�
is�right�derivation�in� �
�
is�stack� �
� ��� �
�� �
�� ��
� ������
� ����

���
is�string�in� ��� �
�
is�subtree� �
� ��
is�subtree�leaf�is�member

�frontier� ��
is�tree� �
��
�� ���
is�wf�action�action�tab� ���
is�wf�grammar� �	
item�set� ���� �������� �	�
item�set�size� ���� �	�
item�set�union� ��� ���� ���
item�setp� �������� �	

items� ���
items�� ��
� ���

Jones� Cli��

jump�dot� ���� ��

just�digits�less�than�b� ��� ��� ��

Kaufmann� Matt� �� �

key�words�step� ��
keyword discrimination� ��� �

labels� �	
last� ��� �
�� ���� �	

INDEX ���

lastdigit� �	
LCF� �
leaf� ��
leaf�frontier� ��
leaves� �
�� ������

leaves�append� ���
leaves�base� ���
leaves�from�bottom�pop�n�trees� ��

leaves�from�bottom�reduce

�leaves� ���

leaves�from�bottom�reduce�trees� ���
leaves�list�tree!frontier� ���
left�hand�sides� ��
length� ��� 	�� ��� �
� ��� ��� �
�

�
�� �	�

��� ���� ��
� ���� ���� ���� �	��
�		

length�append� ��

length�cons� ��� ��
length�make�list�
�
length�nlistp� ��� ��
lessp�length�cons� ��
lessp�pop�stack� ��
lessp�quotient� ��
listp� �

listp�make�list�
�
lists� ��
litatom� �

lockstep� �
�
longest� ��� ��� �

longest pre�x� �	� ��
longest�pre�x�token� �

longest�� �����
longestp� �	� ��
lookup�follow� �	�
lop� �	� ��� �
� �
���
lop�opt� �	
lr�
�items� ���� ���� �	�� �	�

main�theorem� ��	
main�theorem�toktrans��� ��
main�theorem�toktrans��a� ��

main�theorem�toktrans��b� ��
main�theorem�toktrans���

make�key�words� �
� ��
make�list�
��
�
make�list�zero�
�
make�replace� ��
map�listp� 	�
matches�
	
matches�stack� ��
� ���

Matt Factor� ���
member�accept�all�accepts� �

member�append� ��
member�dfsa��nal�states�some

�member� �

member�dstate�dfsa��nal�states� ��

member�longest� �

member�longest�� �

member�order�dfsa��nal!�some

�member� �

mk�action� �

� �
�
mk�actiontab� �	
� �	�
mk�con�guration� �
�� ��
���	� ���� ��
�

���

mk�derivation�step� �
�� ���� ��	� ��
� ����
���

mk�error�action� �
�� �	�� �	�
mk�goto���nt� �	�� �	�
mk�gototab� �	�� �	�
mk�grammar� ��
mk�prod� ��� �
�� ���� ��	� ��
� ���� ����

��	
mk�reduce�action� �
�� �	�
mk�selector� �
�
mk�shift�action� �
�� �	�
mk�tables� �

� �	�
mk�token� �
� �
� ��� ������ ������ �
� ���

��
	�
��
�� ���� ���
mk�transition� ��� ��� ��
mk�tree� ��� ��� ��
� ���� ���� ���� ����

���� ���
mk�unique�set� ��

Moore� J� �
my�make�list�
�
Myhill� J�R�� ��

nat�to�pn� �����
ndfsap� ��� ��� �
� ��� ��� �	�
ndfsap�connect�lr�
�items� �	�
new�accept� �	
newer�accept� ��
newest�accept� ��
newest�accept�� ��
next�items� ���� ���

next�state� 	�� 	�
next�state�table� 	�
next�states� ��� �	���� 		� ��
next�states�append� ��� ��
next�states�dfsa�table� ��
next�states�dfsa�table�for

��
 INDEX

�symbol� ��
next�states�list� �	� ��� 	�� 	�� ��
next�states�list�epsilon�closure

�reached� 	�
next�states�list�nil� 	�
next�states�list�order�equal� 	�
next�states�list�same�as�dfsa

�next�state� ��
nexts� ��� ��� ��� ��� ��
NFSA � DFSA� constructive proof� �	
NFSA � DFSA� existential proof� ��
NFSA � DFSA� hand proof� ��
nfsa�accepts!�dfsa�accepts� �	� �

nfsa!dfsa� ��

ni�si�bis�
�
nl�
�
no�continuations�p� ��� ��
no�discards�left� �

no�empty�lines� ��
no�empty�lines�meaning� ��
no�leading�zeros� �	� ��
no�unused�productions� ��� �	
node�count� �
�� ��
� ���
node�count�append� ��

node�count�reduce�trees� ���
node�count�top�n�pop�n� ��

node�ct� �
�
nodes� �
�
non�de�nedp�next�state� ��� ��
non�discards�undisturbed� �

none�larger� ��
none�larger�longest�� ��
not�de�ned�next�states�nil� ��
not�empty�not�zero� ��
not�lessp�length�longest��other� ��
not�numberp�make�list�
�
not�some�member�not�member�dfsa

��nal�states� �

NQTHM� �
nqthm�mode� ��	
nth� ���� ��
� �	
� �	�

nthcdr� �		
number conversion� ��� ��
numberp� �

occam�� ��
ok�indentation�value� �
� ��
ok�toktrans���

one�epsilon�step�all� 		� 	�
one�state� �	
� �	�

only�leaves�in�frontier� ��
operation names� ��� �

order� ��� ����
� 	�
order�dfsa�next�state�order� ��
order��nal�states� ��
output�levels� ��

parse�it� ���� ���
parser� �
�� ���
parsing skeleton�
�
parsing tables� �

parsing�step� ��
� ���� ���� ��
� ��
� ���
PC�NQTHM� �� ��� �

pdi��
�
Penner� Volker� �
pick�token�names� �
���
�� ���� ��	� ����

���

pick�token�names�append� ���
pick�token�names�list� ���
PLR

� � 	����
plist� ���
�� ��
plist�make�list�
�
plistp� ��� 	�� �	� ��� ��� ��� ��� ��� ��� ��
plistp�append� ��
plistp�cons� ��
plistp�epsilon�closure� 	�
plistp�from�bottom� ��
plistp�nlistp� ��� ��
plistp�reached� 	�
plistp�remove�common�pre�x� ��
plistp�reverse� ��
plus�remainder�times�quotient� ��
plus�zero�arg�� ��
pn�to�nat� �����
Polak� Wolfgang� �
pop� �
� ��� �
�� �
�� ��
� ���
pop�n� �
� ��� ��
� ���� ��	� �������� ���
pop�n�emptystack� ��
pop�n�sub��pop� ���

position� ���� ��
� �	
��	�� �		
pre�token class� �

pre�xp� �	� �
���
pre�xp�longest� ��
pre�xp�longest�� ��
pre�xp�lop� �	� �

pre�xp�re�exive� ��
pre�xp�transitive� ��
preorder�print� �

� �
�
prepare�indentations� �
�

prod�nr� ��� ���� �		

INDEX ���

productions� �
�� �
�
program synthesis�
� ��
Proof Movie� ��
prove�lemma� ��
push� �
� ��� ��
����� ��
����
PVS� ��
� ���� ���� ���

quotient�lessp�arg�� ��
quotient�plus� ��
quotient�times�instance� ��

Rabin� M�O�� ��
reached� 	�� 	�
reached�append� 	�
reaches�nfsa�reaches�dfsa� 	�
reduce�trees� ��
� ���� ��	� ������
� ��
�

���� ���
relative�conversion�ok�
	�
�
relative�free�
��
��
�
relative�meaning�
��
�
relative�theorem�
�
relative�to�ni�si�bi�
��
��
�
remainder�plus� ��
remainder�times��instance� ��
remove�common�pre�x� �
� ��� ��
remove�common�pre�x�lessp� �

remove�empty�lines� ��� �

replace� ��� �

replace�step� �

rest�items� �������� �	
� �	�
restn�
	
retrieve�

retrieve�blanks�
�
retrieve�indents�
�
retrieve�indents��
�
reverse� ������ ���
reverse�append� ��
reverse�reverse� ��
right�hand�sides� ��� �	
roots� �
�� �
�� ���� ���
roots�append� ���
roots�mk�tree� ���
run� �	� ��

scan�

scan�retrieve�is�identity�

scanner� speci�cation� �	
scanning� 	�
Scott� Dana� ��
sel�action�tag� ��

sel�actiontab� �

� ��

sel�axiom� �	� ���� ���� �		
sel�branches� �
��
�
sel�deriv� ��
� ���� ��

sel�error� ��
� ���
sel�gototab� �

� ���
sel�input� ��
� ���� ���� ��
���

sel�items� ������
� �	
� �	�
sel�label� ��� �
�� ��	� ���� ���� �	�
sel�label�reduce� ���
sel�left�derivation�step� �
�
sel�lhs� ��� �
�� ��	� ���� �	���		
sel�lhs�reduce� ���
sel�nonterminals� ��� �	� �		� �	�
sel�parse� ��
� ���� ���
sel�prod�derivation�step� �
�
sel�productions� �	� �
�� ��
� ���� ���� �		
sel�rhs� ��� �
�� ���� ��	� �����		
sel�right�derivation�step� �
�� �
�
sel�root� ����
�
sel�size�reduce� ���
sel�state�shift� ��

sel�states� ��
� ��	� ���
sel�symbols� ��
� ��	� ���� ���� ��
� ����

���
sel�terminals� ��� �	� �
�� �		� �	�
sel�trees� ��
� ��	����� ��
� �������
sentential form� �
�
sentential forms� �
�
set equality� �

set theory� �	
setp� ��� ��� ��� ��
setp�dfsa��nal�states� ��
Shankar� Natarajan� ���
shell� �

shift�dots�through� ��	
short stack� ��
some�member� �
� ��� ��� �

some�path�traces�from�start� 	�
source� �
�
spacing�

split� �	� �
� ��
split�splits� �	� ��
split�splits�hint� ��
squash�
�
stack�length� ��� ��
� ���� ��	���
� ����

���
stack�length�pop�n� ��	
stack�length�push� ��	
stacks� �

Stallman� Richard M�� ��	

��
 INDEX

Stanford Veri�er� �
start�item� ���
start�states� 	�
starts� ��� �
� �	� ��
state� ��� ��
state�action� �	
� �	�� �	�
states� ��� ��� �
� ��� 	�

step�source� �
�� �
�� ���� ��

step�target� �
�
subseq� �

� �
�
subseq�append�append� �
�
subseq�cons��� �

subseq�cons��� �

subseq�cons�append� �

subseq�cons�lemma� �

subseq�frontier�preorder� �
�
subsetp� ����
� ��� ����
� 	�� 	�� ��� �	�

�
�� ���
subsetp�dfsa�next�state� �
� ��
subsetp�dfsa�next�state��� ��
subsetp�dfsa�next�state��� ��

�helper� ��
subsetp�next�states� ��� ��
subsetp�next�states��� ��
subsetp�order� ��
subsetp�reached� 	�
subtree�re�exive� �

symbol�after�dot� ���� ���

table� ��� ��� �
� ��� �	� ��
target� �
�
termination� 		

times�add�� ��
times�zero� ��
token transformations� ��
token�listp� �
� ��� ��� ���
��
��
��

�

���� ��
���
� ���� ���
token�name� �
���� �
�

�
��
	�
�� �
��

��
� ���� ���� ���� ���� ���
token�value� ��� ������ ������ �
�

�
��

	�
��

tokenp� ���
�� �
�� ���
tokens� ��

toktrans�� ��� �

toktrans�� ��� �

toktrans�� ��� �

toktrans�� ��� ��
toktrans�� ��� ��
toktrans�� ��� �

toktrans�� ���

toktrans���main�theorem� �

toktrans���main�theorem� �

toktrans���main�theorem� ��
toktrans�	�main�theorem� ��
toktrans��� �

toktrans���

toktrans��a�main�theorem� ��
top� ��� �
�� �
�� ��
� ���
top�n� ��� ��
� ���� ��	� ���� ��
� ��
� ����

���
traces�from�start� 	�
traces�to��nal� 	�
transitionp� ��� ��� ��
tree� ��
type restriction� �

union� �

valid�ascii�digit�p� �	
valid�ascii�digits�p� ��
valid�deciaml�digit�p� �	
valid�item� �	
� �	�
value� ������ ��
Vienna Development Method�

vocab� ��� �
�� ���
VSE� ��
� ���

well�formed�pn� ��
wf�table� ����
� ��� ����
� ��
white space� ���

Wol�� Burkhart� ��

Young� William D�� ��
Yu� Yuan� ��

Appendix A

Scanning

A�� Character Class Speci�cation for PLR�

It did not seem necessary to introduce an explicit shell constructor for character classes� so
they are represented as a list of cons�pairs� commonly referred to as a map� The �rst element
of each pair is the literal atom giving the name of the character class� the second one is the
list of ASCII�codes for the participating characters� Only explicit listing is available� so for
example all the letters have to be explicitly stated instead of giving an interval for now� For
PLR

� we have the following eleven classes� All of the operators have been grouped together in
one class�

�setq cc

�list

�� ��A ��B ��C ��� ��Z ��a ��b ��c ��� ��z

�cons �le

�list ���� �� �� �� �
 �� �	 �� �� �� �� �� �� �� �
 ��

�	 �� �� �� �� �� �� �� �

�

�
�

 	�� 	�	 	�� 	�� 	�� 	�� 	�� 	�� 	�� 	�

		� 			 		� 		� 		� 		� 		� 		� 		� 		
 	�� 	�	 	�����

�� ��� ��	 ��� ��� ��� ��� ��� ��� ��� ��

�cons �di �list ���� �
 �� �	 �� �� �� �� �� �����

�cons �pe �list ������� �� ���

�cons �bl �list ������� �� ��Space

�cons �co �list ������� �� ���

�cons �eq �list ���	��� �� ���

�cons �mi �list ������� �� ���

�cons �lt �list ������� �� ���

�cons �gt �list ������� �� ���

�cons �nl �list ��	���� �� ��Newline

�� ��� ��� ��� ��� ��� �� ��! ��" ��� ���

�cons �op �list ���� �� ��
� �� ��
	
� �� �	�����

A�� DFSA for PLR�

This is a collection of setqs for a DFSA that recognizes the token classes for PLR
� �

�setq trans

�list

���

��� APPENDIX A� SCANNING

�mk�transition �A �le ��B��

�mk�transition �A �di ��C��

�mk�transition �A �bl ��D��

�mk�transition �A �co ��E��

�mk�transition �A �eq ��F��

�mk�transition �A �mi ��G��

�mk�transition �A �lt ��H��

�mk�transition �A �gt ��I��

�mk�transition �A �op ��J��

�mk�transition �A �nl ��K��

�mk�transition �A �bf ��K��

�mk�transition �A �nf ��L��

�mk�transition �B �le ��B��

�mk�transition �B �di ��B��

�mk�transition �B �pe ��B��

�mk�transition �C �di ��C��

�mk�transition �D �bl ��D��

�mk�transition �E �eq ��M��

�mk�transition �G �mi ��N��

�mk�transition �H �eq ��O��

�mk�transition �H �gt ��P��

�mk�transition �I �eq ��Q��

�mk�transition �K �bl ��R��

�mk�transition �N �le ��N��

�mk�transition �N �di ��N��

�mk�transition �N �pe ��N��

�mk�transition �N �bl ��N��

�mk�transition �N �co ��N��

�mk�transition �N �eq ��N��

�mk�transition �N �mi ��N��

�mk�transition �N �lt ��N��

�mk�transition �N �gt ��N��

�mk�transition �N �op ��N��

�mk�transition �R �bl ��K����

�setq alphabet ��li di pe bl co eq mi lt gt op nl bf nf��

�setq states ��A B C D E F G H I J K L M N O P Q R��

�setq starts ��A��

�setq finals ���B � name� �C � integer� �D � ws� �E � colon�

�F � eq� �G � op� �H � lt� �I � gt�

�J � op� �K � indent� �L � ef� �M � coloneq�

�N � comment� �O � le� �P � ne� �Q � ge� ��

�setq nfsa �fsa� alphabet states starts trans finals��

A�� Token Transformation De�nitions for PLR�

The full token transformation speci�cation from a character sequence to the corresponding
token sequence for PLR

� is given in S�expression notation below�

�setq discard�list ��comment ws��

�setq replace�words

�list �cons �� �plus�

�cons �� �times�

�cons �� �div�

�cons �� �mod�

�cons �� �quest�

�cons �� �exclaim�

�cons �� �arrayopen�

A��� TOKEN TRANSFORMATION DEFINITIONS FOR PLR� ���

�cons �� �arrayclose�

�cons �
 �parenopen�

�cons �� �parenclose���

�setq key�words

�LIST

�CONS ���� �� ��� �AND�

�CONS ���� �� �� ��� �CALL�

�CONS ���
 �� �� �� ��� �FALSE�

�CONS ���� �
� �IF�

�CONS ���� �� �
 �� ��� �INPUT�

�CONS ���� �� ��� �INT�

�CONS ���� �� ��� �NOT�

�CONS ���� ��� �OR�

�CONS ���� �� �� �
 �� ��� �OUTPUT�

�CONS ���
 �� �� ��� �PROCKW�

�CONS ���� �� ��� �REC�

�CONS ���� �� ��� �SEQ�

�CONS ���� �� �� �
� �SKIP�

�CONS ���� �� �� �
� �STOP�

�CONS ���� �� �� ��� �TRUE�

�CONS ���� �� �� �� ��� �WHILE ���

�setq continue�list

�cons ��plus times div mod quest

exclaim minus coloneq� nil��

�defn token�transformations �toks discard�list replace�words key�words

continue�list discard�name

determine�name determine�default�

�indentator

�halve

�prepare�indentations

�remove�empty�lines

�discontinue

�integer�convert

�determine�key�words

�replace

�discard toks discard�list� discard�name replace�words�

determine�name key�words determine�default��

continue�list������

A scanner for PLR
� is the following function�

�defn scan �nfsa cc tape discard�list

replace�words key�words continue�list

discard�name determine�name determine�default�

�token�transformations

�split nfsa cc tape�

discard�list replace�words key�words continue�list

discard�name determine�name determine�default��

called as

�scan nfsa cc pl�r discard�list replace�words key�words continue�list

�op �name �ident��

The parameter pl�r needs to be a list of bytes� not a �le� The following Lisp forms can
be used to create such a list�

��	 APPENDIX A� SCANNING

�defparameter a�very�rare�cons �eof�

�defun current�byte �stream�

�� peek at the first character�byte in the stream

�let ��char

�peek�char nil �� don�t ignore whitespace

stream

nil

a�very�rare�cons���

�progn �� �princ char�

char���

�defun rest�bytes �stream�

�� remove the first character from the stream� return the rest

�let ��char �read�char stream nil a�very�rare�cons ���

�if �eq char a�very�rare�cons�

nil

stream���

�defun convert �stream�

�if �eq �current�byte stream� a�very�rare�cons�

nil

�cons �current�byte stream�

�convert �rest�bytes stream�����

�defun doit �prog�

�with�input�from�string �stream prog� �convert stream���

�defun text�to�ascii �l�

�if �equal l nil�

nil

�cons �char�code �car l��

�text�to�ascii �cdr l�����

�defun make�bytes �text� �text�to�ascii �doit text���

�� This is the program pl�r�tiny�pl�r

�setq text	

�INT x �

INT y �

SEQ

INPUT � x

y �� x � x

OUTPUT y

��

�� We make bytes out of it

�setq bytes	 �make�bytes text	��

�� or are lazy and use this for the R�LOOP

A�
� RETRIEVAL OF PLR� CHARACTERS ���

�setq bytes	

���� �� �� �� 	�� �� �� 	� �� �� �� �� 	�	 �� �� 	� �� �
 �	 	� �� �� ��

�� �� �� �� �� �� �� 	�� 	� �� �� 	�	 �� �� �	 �� 	�� �� �� �� 	�� 	�

�� �� �
 �� �� �� �� �� �� �� �� 	�	 	���

A�� Retrieval of PLR� Characters

This is the outer retrieval function for obtaining a character sequence representation that will
scan back to the same token sequence�

�defn retrieve �toks replace�words discard�name determine�default

key�words determine�name�

�spacing

�compact

�squash

�convert�back

�retrieve�blanks

�retrieve�indents toks���

determine�name key�words determine�default�

discard�name replace�words���

called as

�retrieve toks replace�words �op �ident key�words �name�

��� APPENDIX A� SCANNING

Appendix B

Parsing

B�� Parsing Table Generator

B���� Generation Instructions

In order to generate a table for the parsing skeleton one must go to a bit of trouble� as the �rst
and follow calculation could not be expressed in NQTHM� A non�left�recursive context�free
grammar is needed as input to the table generator� The following lists the instructions in the
order they need to be done�

�� Bootstrap NQTHM and make sure that all �les in the init�lsp are loaded�

�� Start �R�LOOP�

�� Submit the grammar in this form� �mk�grammar nonterms terms prods axiom�

�setq grammar
�mk�grammar

��PROG BLK PROC PDECLLIST PDECL DECL SPROCLIST
PDECLREST SPROCREST GCREST
SPROC GCLIST GC EXP LITERAL SIMPLE
DOP MOP VAR� � non�terminals
��MINUS NOT PLUS TIMES DIV REM EQ LT GT NE LE GE AND OR
QUEST EXCLAIM
INT TRUE FALSE SKIP STOP COLONEQ INPUT OUTPUT SEQ IF WHILE CALL
IDENT COLON LP RP LB RB REC INTEGER ni si bi PROCKW� � terminals

�list
�mk�prod � ��PROG� ��BLK��
�mk�prod � ��BLK� ��DECL COLON si BLK��
�mk�prod � ��BLK� ��PROC��
�mk�prod 	 ��DECL� ��INT IDENT��
�mk�prod
 ��DECL� ��LB INTEGER RB INT IDENT��
�mk�prod � ��PDECL� ��PROCKW IDENT LP RP ni SPROC bi COLON��
�mk�prod � ��PDECLLIST� ��PDECL si PDECLREST��
�mk�prod
 ��PDECLLIST� ��PDECL��
�mk�prod � ��PDECLLIST� ����
�mk�prod � ��PDECLREST� ��PDECL��
�mk�prod �� ��PDECLREST� ��PDECL si PDECLREST��
�mk�prod �� ��PROC� ��REC ni PDECLLIST bi COLON si PROC��
�mk�prod �� ��PROC� ��SPROC��
�mk�prod �	 ��SPROC� ��SKIP��
�mk�prod �
 ��SPROC� ��STOP��
�mk�prod �� ��SPROC� ��VAR COLONEQ EXP��
�mk�prod �� ��SPROC� ��INPUT QUEST IDENT��
�mk�prod �
 ��SPROC� ��OUTPUT EXCLAIM EXP��
�mk�prod �� ��SPROC� ��CALL IDENT LP RP��
�mk�prod �� ��SPROC� ��SEQ ni SPROCLIST bi��
�mk�prod �� ��SPROC� ��IF ni GCLIST bi��
�mk�prod �� ��SPROC� ��WHILE EXP ni SPROC bi��
�mk�prod �� ��SPROCLIST� ��SPROC si SPROCREST��
�mk�prod �	 ��SPROCLIST� ��SPROC��
�mk�prod �
 ��SPROCLIST� ����
�mk�prod �� ��SPROCREST� ��SPROC��
�mk�prod �� ��SPROCREST� ��SPROC si SPROCREST��
�mk�prod �
 ��GCLIST� ��GC si GCREST��
�mk�prod �� ��GCLIST� ��GC��
�mk�prod �� ��GCLIST� ����
�mk�prod 	� ��GCREST� ��GC si GCREST��
�mk�prod 	� ��GCREST� ��GC��
�mk�prod 	� ��GC� ��EXP ni SPROC bi��
�mk�prod 		 ��EXP� ��SIMPLE��

���

��
 APPENDIX B� PARSING

�mk�prod 	
 ��EXP� ��MOP SIMPLE��
�mk�prod 	� ��EXP� ��SIMPLE DOP SIMPLE��
�mk�prod 	� ��SIMPLE� ��VAR��
�mk�prod 	
 ��SIMPLE� ��LITERAL��
�mk�prod 	� ��SIMPLE� ��LP EXP RP��
�mk�prod 	� ��LITERAL� ��INTEGER��
�mk�prod
� ��LITERAL� ��TRUE��
�mk�prod
� ��LITERAL� ��FALSE��
�mk�prod
� ��VAR� ��IDENT��
�mk�prod
	 ��VAR� ��IDENT LB EXP RB��
�mk�prod

 ��DOP� ��PLUS��
�mk�prod
� ��DOP� ��MINUS��
�mk�prod
� ��DOP� ��TIMES��
�mk�prod

 ��DOP� ��DIV��
�mk�prod
� ��DOP� ��REM��
�mk�prod
� ��DOP� ��EQ��
�mk�prod �� ��DOP� ��LT��
�mk�prod �� ��DOP� ��GT��
�mk�prod �� ��DOP� ��NE��
�mk�prod �	 ��DOP� ��LE��
�mk�prod �
 ��DOP� ��GE��
�mk�prod �� ��DOP� ��AND��
�mk�prod �� ��DOP� ��OR��
�mk�prod �
 ��MOP� ��MINUS��
�mk�prod �� ��MOP� ��NOT��
�

���

� Pull out the non�terminals
�setq nts �sel�nonterminals grammar��

� The terminals need the end�of�file marker
�setq terms �append �sel�terminals grammar� �list �end�of�file����

	� Calculate the set of LR�
� items for PLR
� in �R�LOOP�� The result� with ��
 items� can

be found at the WWW�site given in Section ���� where the other large results are also
kept�

� �setq fis �LR���items grammar��

�LIST �MK�PROD � ��PROG� ��DOT BLK��

�MK�PROD � ��PROG� ��BLK DOT��

�MK�PROD 	 ��BLK� ��DOT DECL COLON SI BLK��

�MK�PROD 	 ��BLK� ��DECL DOT COLON SI BLK��

����

�� Create the follow set

�setq follows �all�follows grammar��

ok

�� Start the LISP�Timer with

�get�decoded�time�

�� Reenter �R�LOOP� calculate the canonical collection� For PLR
� it consists of ��� sets of

items� each determining a state in the deterministic automaton�

� �setq cc �canonical�collection grammar��

�LIST

�ITEM�SET

�LIST �MK�PROD � ��PROG� ��DOT BLK��

�MK�PROD 	 ��BLK� ��DOT DECL COLON SI BLK��

�MK�PROD � ��BLK� ��DOT PROC��

�MK�PROD � ��DECL� ��DOT INT IDENT��

�MK�PROD � ��DECL� ��DOT LB INTEGER RB INT IDENT��

������

B��� PARSING TABLE GENERATOR ���

� Construct the action and goto tables�

There are ��� entries in the action table and
� in the goto table for PLR
� �

� �setq tables �construct�tables	 cc nts terms fis follows��

�LIST

�LIST �CONS ��� � INT� �MK�ACTION �SHIFT 	� � � ���

�CONS ��� � SKIP� �MK�ACTION �SHIFT �� � � ���

�CONS ��� � STOP� �MK�ACTION �SHIFT �	 � � ���

����

���� � BLK� �GOTO 	��

���� � PROC� �GOTO 	���

���� � PDECLLIST� �GOTO 	���

���
 � BLK� �GOTO 	���

���
 � PROC� �GOTO 	���

����

�� How long did we need to wait�

�get�decoded�time�

�
� Save a copy of the tables for future reference#

�

 APPENDIX B� PARSING

Bibliography

�AL��� Mark Aagaard and Miriam Leeser� Verifying a Logic Synthesis Tool in Nuprl�
A Case Study in Software Veri�cation� In Proceedings of the �th Workshop on
Computer Aided Veri�cation� �����

�ASU
�� Alfred V� Aho� Ravi Sethi� and Je�rey D� Ullman� COMPILERS
 Principles�
Techniques and Tools� Addison�Wesley� Reading� MA� ��
��

�AU��� Alfred V� Aho and Je�rey D� Ullman� The Theory of Parsing� Translation and
Compiling� volume I � Parsing� Prentice�Hall� �����

�BBMS
�� Bettina Buth� Karl�Heinz Buth� Ursula Martin� and Victoria Stavridou� Experi�
ments with program veri�cation systems� Technical Report BB �� ProCoS�� Kiel�
London� ��
��

�BE��� F� L� Bauer and J� Eickel� editors� Compiler construction� An Advanced Course�
Berlin� Heidelberg� ����� Springer Verlag�

�Bev

� William R� Bevier� KIT� A Study in Operating System Veri�cation� Technical
Report �
� CLInc� ��

�

�Bev
�� William R� Bevier� Kit and the Short Stack� Journal of Automated Reasoning�
��	�� Dec ��
��

�BHMY
�� William R� Bevier� Warren A� Hunt� Jr�� J Strother Moore� and William D�
Young� An Approach to Systems Veri�cation� Journal of Automated Reasoning�
��	�� Dec ��
�� also available as CLInc Technical Report 	�� ��
��

�BM��� Robert S� Boyer and J Strother Moore� A Computational Logic� Academic Press�
New York� �����

�BM
	a� Robert S� Boyer and J Strother Moore� A Mechanical Proof of the Turing Com�
pleteness of Pure Lisp� In W� W� Bledsoe and D� L� Loveland� editors� Automated
Theorem Proving
 After �� years� pages �������� American Mathematical Soci�
ety� Providence� R�I�� ��
	�

�BM
	b� Robert S� Boyer and J Strother Moore� A mechanical proof of the unsolvability
of the halting problem� Journal of the ACM� ������		��	�
� July ��
	�

�BM
	c� Robert S� Boyer and J Strother Moore� Proof Checking the RSA Public Key
Encryption Algorithm� American Mathematical Monthly� �������������� ��
	�

�ProCos reports re!ect work which was partially funded by the Commission of the European Communities
�CEC� under the ESPRIT programme in the �eld of Basic Research Action project no� ���	�
ProCoS� Provably
Correct Systems� and are available from the authors or from Dines Bj#rner� Department of Computer Science�
Technical University of Denmark� Building �		$� DK����� Lyngby� Denmark

�
�

�
� BIBLIOGRAPHY

�BM

� Robert S� Boyer and J Strother Moore� A Computational Logic Handbook� Aca�
demic Press� New York� ��

�

�Bro
�� A� Bronstein� MLP
 String�functional semantics and Boyer�Moore mechaniza�
tion for the formal veri�cation of synchronous circuits� PhD thesis� Stanford
University� ��
��

�Brz�	� J� A� Brzozowski� Derivations of Regular Expressions� JACM� ���	��	
��	�	�
Oct� ���	�

�BWW��� Karl�Heinz Buth and Debora Weber�Wul�� The �Automated Proving and Term
Rewriting� Praktikum� Technical Report KHB �� ProCoS� Kiel� February �����

�BY��� R� S� Boyer and Y� Yu� Automated correctness proofs of machine code programs
for a commercial microprocessor� Technical Report TR������� Computer Science
Dept�� University of Texas� Austin� November �����

�BY��� Robert S� Boyer and Yuan Yu� Automated proofs of object code for a widely
used microprocessor� In Proceedings of the

th International Conference on
Automated Deduction� �����

�CM
�� Avra Cohn and Robin Milner� On using Edinburgh LCF to prove the correctness
of a parsing algorithm� Technical Report CSR�����
�� University of Edinburgh�
��
��

�CO�
� Rachel Cardell�Oliver� Formal veri�cation of real time protocols using higher or�
der logic� Technical Report �
�� University of Cambridge� Computer Laboratory�
August ���
�

�Coh
�� Avra Cohn� The correctness of a precedence parsing algorithm in LCF� Technical
Report ��� University of Cambridge� April ��
��

�Coh

� Avra Cohn� A proof of correctness of the Viper microprocessor� The �rst level� In
G� Birtwistle and P� A� Subrahmanyam� editors� VLSI Speci�cation� Veri�cation
and Synthesis� chapter �� pages ����� Kluwer Academic Publishers� ��

�

�Coh
�a� Avra Cohn� Correctness properties of the Viper block model� The second level�
In G� Birtwistle and P� A� Subrahmanyam� editors� Current Trends in Hardware
Veri�cation and Automated Theorem Proving� chapter �� pages ������ Springer�
Verlag� ��
��

�Coh
�b� Avra Cohn� The notion of proof in hardware veri�cation� Journal of Automated
Reasoning �� ����������
� ��
��

�DB��� ProCoS � ESPRIT BRA ��
	 Final report � Provably Correct Systems� Technical
report� ProCoS ID�DTH� October �����

�DeR��� Franklin L� DeRemer� Simple LR�k� grammars� CACM� �	����	���	�
� �����

�Fet

� James H� Fetzer� Program veri�cation� The very idea� CACM� �������
	
��
���
September ��

�

�Fou�	� Free Software Foundation� Gnu software archives� Walnut Creek CD�ROM� ���	�

�Fr�a�
� Martin Fr�anzle� Spezi�kation und Veri�kation eines �ubersetzers f�ur eine rekur�
sive occam�artige Programmiersprache� Master�s thesis� Institut f�ur Informatik
und Prakt� Mathematik der Universit�at Kiel� Oktober ���
�

BIBLIOGRAPHY �
�

�GAS
�� Donald I� Good� Robert L� Akers� and Lawrence M� Smith� Report on Gypsy
��
�� Technical Report �c� CLInc� ��
�� Classi�ed�

�Glo

� Paul Gloess� An experiment with the Boyer�Moore theorem prover� A proof of
the correctness of a simple parser of expressions� In LNCS ��
 Proceedings of
the CADE��� pages ��	����� Berlin� ��

� Springer Verlag�

�GMW��� Michael Gordon� Robin Milner� and Christopher Wadsworth� Edinburgh LCF�
Springer Verlag� New York� �����

�Gor
�� Michael J� C� Gordon� HOL� a machine oriented formulation of higher order logic�
Technical Report �
� University of Cambridge Computer Laboratory� ��
��

�Gou

� Kevin John Gough� Syntax Analysis and Software Tools� Addison�Wesley�
Sydney� ��

�

�Gro��� Stanford Veri�cation Group� Stanford Pascal Veri�er� User Manual� Technical
Report STAN�CS�������� Stanford University� Dept� Comp� Sci�� March �����

�HLS���� Dieter Hutter� Bruno Langenstein� Claus Sengler� J�org H� Siekmann� Werner
Stephan� and Andreas Wolpers� Deduction in the Veri�cation Support Envir�
onment �VSE�� In Proceedings of the Formal Methods in Europe
���� Oxford�
����� To appear�

�HU��� John E� Hopcroft and Je�rey D� Ullman� Introduction to Automata Theory�
Languages and Computation� Addison�Wesley� Reading� �����

�Hun
�� Warren A� Hunt� Jr� The mechanical veri�cation of a microprocessor design�
Technical Report �� CLInc� ��
��

�Hun
�� Warren A� Hunt� Jr� Microprocessor design veri�cation� Journal of Automated
Reasoning� ��	�� Dec ��
�� also available as CLInc Technical Report 	
� ��
��

�HW�
� R� Nigel Horspool and Michael Whitney� Even faster LR parsing� Software �
Practice � Experience� �
������������ June ���
�

�il

� inmos ltd� occam � Reference Manual� Series in Computer Science� Prentice�Hall
International� ��

�

�Jon

� Cli� B� Jones� Software Development
 A Rigorous Approach� Prentice Hall�
��

�

�Jon�
� Cli� B� Jones� Systematic Software Development using VDM� Prentice�Hall
International� London� ���
�

�Kau
�� Matt Kaufmann� DEFN�SK� An Extension of the Boyer�Moore Theorem Prover
to Handle First�Order Quanti�ers� Technical Report 	�� CLInc� ��
��

�Kau��� Matt Kaufmann� Generalization in the presence of free variables� A mechanically�
checked correctness proof for one algorithm� Journal of Automated Reasoning�
���
������ �����

�KLW�	� Kolyang� Junbo Liu� and Burkhart Wol�� Transformational development of lex�
Technical Report Draft version � July �	� Universit�at Bremen� ���	�

�Knu
�� Donald E� Knuth� The Art of Computer Programming� Volume �
 Seminumerical
Algorithms� Addison�Wesley� Reading� MA� ��
��

�
	 BIBLIOGRAPHY

�KW��� Kolyang and Burkhart Wol�� Development by Re�nement Revisited� Lessons
learnt from an example� In Proceedings of the Softwaretechnik���� Braunsch�
weig� �
 ����� also in �Mitteilung der GI�Fachgruppe Software�Engineering und
Requirements�Engineering� Band ��� Heft �� Okt� �����

�Lan��� Peter Landin� The next �

 programming languages� CACM� �� March �����

�Lan��� Hans Langmaack� Application of regular canonical systems to grammars trans�
latable from left to right� Acta Informatica� �����������	� �����

�Les��� M� E� Lesk� LEX � a lexical analyzer generator� Technical Report ��� AT)T
Bell Laboratories� Murray Hill� NJ� �����

�May�
� Otto Mayer� Syntaxanalyse� Reihe Informatik ��� BI Wissenschaftsverlag� ���
�

�MO�
� Markus M�uller�Olm� Korrektheit einer �ubersetzung der Sprache rekursiver Funk�
tionsde�nitionen erster Ordnung in eine einfache imperative Sprache� Mas�
ter�s thesis� Institut f�ur Informatik und Prakt� Mathematik der Universit�at Kiel�
November ���
�

�Moo

� J Strother Moore� Piton� A veri�ed assembly�level language� Technical Re�
port ��� CLInc� ��

�

�Moo
�� J Strother Moore� A mechanically veri�ed language implementation� Journal of
Automated Reasoning� ��	�� Dec ��
�� also available as CLInc Technical Report
�
� ��

�

�MP��� J� McCarthy and J� Painter� Correctness of a compiler for arithmetic expressions�
In J� T� Schwartz� editor� Mathematical Aspects of Computer Science� Proc�
Symp� Appl� Math� volume XIX� pages ���	�� American Mathematical Society�
�����

�Myh��� J�R� Myhill� Finite automata and representation of events� Technical Report
Tech Rep� �����	� Wright Air Development Center� �����

�ORS��� S� Owre� J� Rushby� and N� Shankar� PVS� A Prototype Veri�cation System� In
Deepak Kapur� editor� Proceedings of the CADE

� Saratoga� NY� June
����
number �
� in LNAI� pages �	
����� Springer Verlag� �����

�ORS��� S� Owre� J� Rushby� and N� Shankar� A tutorial on speci�cation and veri�ca�
tion using PVS� In Tutorial Material for FME���
 Industrial�Strength Formal
Methods� Proceedings of the First International Symposium of Formal Methods
Europe� Odense� Denmark� pages ����	
�� April �����

�Pag��� David Pager� A practical general method for constructing LR�k� parsers� Acta
Informatica� ���	����
� �����

�Pau�
� Lawrence C� Paulson� Isabelle� The next �

 theorem provers� In P� Odifreddi�
editor� Logic and Computer Science� pages �����
�� Academic Press� ���
�

�Pau��� Lawrence C� Paulson� Introduction to Isabelle� Technical Report �

� University
of Cambridge� Computer Laboratory� �����

�Pau�	� Lawrence C� Paulson� Isabelle
 A Generic Theorem Prover� Number
�
 in
LNCS� Springer�Verlag� New York� ���	�

BIBLIOGRAPHY �
�

�Pen
�� Volker Penner� Entwicklung und Veri�kation eines Scanner Generators mit dem
Gypsy Veri�cation Environment� Technical Report
�� RWTH Aachen� Schriften
zur Informatik und Angewandten Mathematik� ��
��

�Pie�
� Laurence Pierre� The formal proof of sequential circuits described in CASCADE
using the Boyer�Moore theorem prover� In L� Claesen� editor� Formal VLSI
Correctness Veri�cation� Elsevier� ���
�

�Pie��� Laurence Pierre� VHDL description and formal veri�cation of systolic multipliers�
In IFIP Conference on Hardware Description Languages and their applications�
Ottawa� Canada� April �����

�Pie�	� Laurence Pierre� An automatic generalization method for the inductive proof of
replicated and parallel architectures� In Theorem Provers in Circuit Design� Bad
Herrenalb �Blackforest�� Germany� September ���	�

�Pol
�� Wolfgang Polak� Compiler Speci�cation and Veri�cation� LNCS ��	� Springer
Verlag� New York� ��
��

�Pro

� GNU Project� Bison � Manual Page� Public Domain Software� ��

�

�RS��� M� O� Rabin and D� Scott� Finite automata and their decision problems� IBM
Journal� pages ��	����� April �����

�Rus
�� David M� Russino�� An experiment with the Boyer�Moore theorem prover� A
proof of Wilson�s theorem� Journal of Automated Reasoning� ������������� ��
��

�Rus��� David M� Russino�� A mechanical proof of quadratic reciprocity� Journal of
Automated Reasoning�
���� �����

�Sha
�� N� Shankar� A mechanical proof of the Church�Rosser theorem� Technical Re�
port 	�� University of Texas� Institute for Computer Science� Austin� Texas�
March ��
��

�Sha
�� N� Shankar� Proof Checking Metamathematics� PhD thesis� Univ� of Texas�
Austin� ��
��

�SSS

� S� Sippu and E� Soisalon�Soininen� Parsing Theory� Vol�

 Languages and Pars�
ing� volume �� of EATCS Monograph on Theoretical Computer Science� Springer
Verlag� Berlin� ��

�

�VCDM�
� D� Verkest� L� Claesen� and H� De Man� Correctness proofs of parameterized
hardware modules in the Cathedral�II synthesis environment� In Proceedings of
EDAC���� pages �� � ��� March ���
�

�VVCDM��� D� Verkest� J� Vandenbergh� L� Claesen� and H� De Man� A description methodo�
logy for parameterized modules in the Boyer�Moore logic� In V� Stavridou� T� F�
Melham� and R� T� Boute� editors� IFIP Transactions A�
�
 Theorem Provers
in Circuit Design� pages �� � ��� Elsevier� �����

�WM��� Reinhard Wilhelm and Dieter Maurer� �Ubersetzerbau� Theorie� Konstruktion�
Generierung� Springer Verlag� Berlin� Heidelberg� �����

�WW�
� Debora Weber�Wul�� Trip report � Visit to Computational Logic� Inc�� Austin�
Texas� Technical Report DWW �� ProCoS� Kiel� February ���
�

�
� BIBLIOGRAPHY

�WW��� Debora Weber�Wul�� Pass collapsing � An optimization method for compiler
proofs� Technical Report DWW �� ProCoS Kiel� September �����

�WW��� Debora Weber�Wul�� When whitespace conveys meaning� Technical Report
DWW �
� TFH Berlin� Berlin� October �����

�WW��a� Debora Weber�Wul�� Proof movie � A Proof with the Boyer�Moore prover�
Formal Aspects of Computing� ���������� �����

�WW��b� Debora Weber�Wul�� Selling formal methods to industry� In FME��� Symposium
Industrial Strength Formal Methods� Proceedings� April
�����
���� Odense�
Denmark� number ��
 in LNCS� pages ������
� �����

�You

� William D� Young� A veri�ed code generator for a subset of Gypsy� Technical
Report ��� CLInc� ��

�

�You
�� William D� Young� A mechanically veri�ed code generator� Journal of Automated
Reasoning� ��	�� Dec ��
�� also available as CLInc Technical Report �� � ��
��

�You��� William D� Young� A mechanically checked proof of the equivalence of determ�
inistic and non�deterministic �nite state machines� October ��� ����� CLInc
Internal Note (��
�

�Yu�
� Yuan Yu� Computer proofs in group theory� Journal of Automated Reasoning�
�������
�� ���
�

