1	Ada as a First Language

Prof. Dr. Debora Weber-Wulff

Technische Fachhochschule Berlin

FB Informatik

Luxemburger Str. 10

13353 Berlin

weberwu@tfh-berlin.de

Ada has been the first language of instruction for computer science engineers for more than five years at the University of Applied Science (TFH Berlin). I have taught the first language course four times and have gathered here some observations about and experiences with using Ada as a language for beginning programming language instruction.

Ada has always been an „industrial-strength„ language. Ada 83 was often seen as being a military language, complex and difficult to understand, with extremely expensive compilers. The latter problem has been resolved since the availability of GNAT and student versions of ObjectAda. But with Ada 95 introducing object-oriented constructs without using the „popular„ class terminology, even more voices have been raised questioning the suitability of Ada for beginning instruction.

1.1 	The First Language Problem

There is a difference between learning a first programming language and learning further programming languages. Understanding is a process in which a congruence between new knowledge and organised knowledge must be constructed [Dut 94]. A beginner has no structures to build on other than everyday experiences as a computer user. A schema must first be found that properly reflects the programming language paradigm used. In learning further languages, one can build on the constructs already understood, even though the complete schema might need to be rebuilt in order to accommodate the new constructs.

This means that the first language is important because it sets the stage for the learning of further languages. In addition, learning the first programming language is often complicated by other skills which are lacking. Many beginners are not comfortable with using an editor and they may not even have a mental model of what happens when they make a copy of a program on a diskette. So in addition to the new schema for programming that they must learn, they are confronted with another schema for constructing a runnable program that may be very complicated.

Ebrahimi [Ebr94] reports typical beginner problems to be with loops (termination and initialisation) and with error handling. Since the error messages from the compiler are seldom understood, beginners will often resort to "syntax guessing", feeling that their program is correct when it finally compiles. When a very strongly typed language such as Ada is used for beginning instruction, this will cause much frustration, as the probability of discovering a syntactically correct program by chance is not large. As a student of mine one remarked: "Ada is so frustrating because there are so many error messages, usually because I haven’t thought out the problem right. But when I finally do get the syntax right, the program tends to be almost right. When I program in C++, the compiler accepts my programs more readily, but they seldom do what I intended them to."

This leads to a perception of Ada being a difficult language when the problem is actually that the Ada compiler is just reflecting the confusion on the part of the programmer! This is unfortunate, as beginners need to experience successes and to see the process of programming in a positive light. Using a language such as Eiffel, C++ or even Java can thus seem easier for beginners, because they see something happening more quickly. They don’t realise that they will be spending quite a lot of time tracking down unexplained behaviour in their programs.

So even when it is reported, as in Hornecker [Hor 98], that beginners understand object oriented concepts more easily than general programming concepts, we must be sure to differentiate between what they feel that they have learned and what they really have learned. Besides, even in an object-oriented language, one must eventually deal with questions about storage locations, sequences of actions and the construction of loops. We still have to teach our students about the problems of using a finite machine, we have to help them learn how to find good representations for things they want to use in their programs, and we must teach them how to develop an algorithm.

Teaching Ada as a first language would seem to be a good choice, as students are immediately confronted with constructs designed to keep the harsh realities of programming from causing unexpected problems in industrial use. Programs can be kept readable and thus maintainable, they can be implemented with portability and efficiency in mind�, and they can have robustness designed into the system. Many good principles of software design such as information hiding or reuse are readily available in the language.

How do children learn their first language? Experiments that were conducted to prove that humans would speak Latin naturally if they were kept without contact to a vernacular failed miserably. Children learn by imitation. We speak with them, we speak around them in correct language. They try out some sounds, and are rewarded by lots of attention and are encouraged to try again. As they get older more attention is paid to correcting their syntax, even though we often understand what they mean. They learn new words as they are needed, and eventually they have a mental model of their mother tongue so strong that no conscious effort is necessary in order to speak or to write.

How do we teach programming? We offer bits of syntax that do not make sense (What do I need a loop for? Why do I need to know what an array is?), give some programs to read, and hand out problems: calculate the area of a circle, input some numbers and calculate the average, convert Roman numerals to decimal numbers and vice versa. Today’s beginners are often angry when we assign these exercises — they want to learn how to write ray-tracing software and adventure games and network database applications! They demand to be taught these things from the beginning. On the other hand, companies are having trouble with their applications written in COBOL or C++ or they think that they need Java and are also demanding that the students to be taught in these languages.

What is necessary for a language — regardless of the paradigm used — to be successful for beginning programming instruction?

The language must be simple in the sense that there are no confusing exceptions to syntax rules,

there should not be numerous ways to do the same thing,

it must be possible to make the results of computation visible quickly, so that the students can experience successes, and

the compiler must operate in a very simple and comfortable environment.

No popular language, not even Ada, and no compiler can meet these criteria. Languages that were designed explicitly for instruction such as the original Pascal or Forth or Logo are difficult to scale up. When enough of the language is understood to attempt a large-scale project, the deficiencies of these languages are suddenly seen, and one must learn a new language in order to be able to cope with this particularity or some other problem.

Can Ada be both, a language for beginning instruction and a language for industrial programming? I still feel that it is possible, and wish to discuss in the following pages the problems with Ada that confuse or alienate beginners, and offer some suggest�ions for avoiding some of the more difficult ones.

1.2 	Simplicity above all

It wastes precious teaching time trying to find understandable explanations for the beginner’s questions about syntactical oddities that they can probably only under�stand when they have learned compiler construction. For example in Pascal, since the language does not have an explicit end if marker, a semicolon may not be used before an else so that the compiler can deduce the nesting properly. This type of problem has been nicely taken care of in Ada by having a rule that all structuring constructs must have a corresponding end marker. By making this a rule, it is more easily learned. Interestingly, beginners don’t complain about this being "too much to type", on the contrary, since the end markers can be differentiated they can more easily inspect a nested construct for correctness than they can if there is just a collection of terminating closing braces.

If we confine ourselves for the beginning instruction to the "Pascal subset"of Ada, we start off with a simple language that does not suffer from ambiguous or disorienting syntax. We must still include enough of the Ada constructs such as packages so that the programs the students write will run with any Ada compiler. When in the course of instruction something comes up, for example, the students have just realised that it could be useful to know what caused an error to occur, we are able to introduce just a bit more of full Ada in order to answer the questions.

The first step for beginning instruction is to avoid the LRM — its unambiguous language is just not easily understood by beginners. The American solution of teaching from a textbook is extremely helpful here. Since this is not typical at German institutions of higher learning and since German students do not like to read English, I translated many parts of Feldman and Koffman’s book [FK92] for use in class. Handing out scripts, however, has not been as successful as having them copy definitions and small examples from the board and then handing out larger examples for reading and discussing.

What are the problems with Ada?

with�The necessity for "with"ing Ada.text_io is mystifying. I tell my students that this is just a formality, and ask them to bear with me until we are in a position to understand it. I offer an analogy to something from everyday life so that they can begin to construct their mental models: with foo; is like having the keys to foo’s apartment. I don’t have to go in, but if I need something that is available there, like a spaghetti maker, that I don’t have in my apartment, I can get in to use it.

use�To use or not to use? Here I differ from Feldman and Koffman. They suggest not using use clauses so that the students can see exactly where each procedure and operator comes from. This caused problems with the unnatural use of infix operators in Ada 83, which can be avoided in Ada 95 by using a use type clause. But the programs still suffer from bloat, especially as they also use parameter names in all procedures and functions:

�	text_io.get (item => i);						�vs.�	get (i);									��Although the former is indeed much better for programs that will have to be maintained, it is difficult for a beginner to filter out the important lexemes from the ones that are only used as markers. I used to think that it was better to make the students program for maintenance from the start — keep it readable and unambiguous — but I have found that this keeps many students from under�standing what they are writing. So I now aim for first learning the structures, and then learning how to use the additional advantages Ada offers.

main procedure

Not being able to distinguish the main program by inspecting the source text, however useful this may be in a professional context, is a source of confusion. What is the difference between this "outer"procedure and other procedures I declare? The confusion is complete when we begin using packages, as a package can contain many procedures, none of which are the main, but all of which resemble it! When we first try and link a program, our compiler asks us by way of a window full of little boxes to fill out, which procedure should be the main one. It does suggest the current procedure, but a beginner does not understand why the compiler doesn’t just carry on at this point. It would be helpful to have an environment that can toggle all the advanced functions off. Since we don’t, I just suggest that they push okay, even though I feel bad about training them to just push the button suggested without thinking about what the window means.

�
declarations�The declaration part suffers from the general problem of students not under�standing the difference between a variable and a type. Ada compounds the problem by having both subtypes and types, which are not readily differentiated. If one only permits the students to use types, the conversions necessary for type compatibility for even simple calculations are overwhelming. If subtypes are used there are now two different kinds of type declarations: numeric ones that use subtype, while type must be used for enumerations, records and arrays. If the student forgets where the dividing line is and writes type T1 is string (1..6); the compiler will complain that a new is missing. The students type in new if that is what the compiler wants, and are angry that now the puts and gets from Ada.text_io will not work.

Ada also has typed and untyped constants. I try and avoid the latter if at all possible, because the beginners do not understand why there is a need for both kinds. Of course, I encourage them to use constants for all literals.

repetition�Although there are some analogies in everyday life such as singing a round or working on an assembly line, this is one of the most difficult concepts for beginners to understand and to learn to use. I have tried teaching loop invariants with little success. Having different kinds of loops does not make sense to beginners when they don’t even know why they want to repeat something anyway. Ada offers a very elegant way out of the problem: the general loop that uses an exit-statement to terminate. This is much easier to teach first, and then to show that for one kind of loop there is an alternate syntax.

There is still a problem with the for-loops, however. Although it makes much sense in professional use to have implicit declaration of the loop variable so that it is not available outside of the loop, this breaks the rule that all variables have to be defined. I have not found anything that helps here, perhaps an editor that colors all loop variables green so that one can explain that only black variables need declarations.

input/output�The need to instantiate packages for all types for input and output is a major drawback. It is too much to be explained away as "magic", the students want to understand what is behind it. If we take the easy way out and always define an integer I/O-package and just use integer subtypes for the numeric ones we are fine until we get to arrays and records. If Ada knew how to handle numbers and strings (which are supposed to be arrays), why can’t it output a simple array of integers? At this point a digression to at least explain what a generic package is can be useful.

parameters�Getting beginners to understand the use of parameters is very difficult when they are not quite sure what a variable is. I thought that using named associations to map the formal parameters to the actual parameters would contribute to the construction of a useful mental model, but this does not seem to be the case. It is also confusing for those who have some prior programming experience, as this syntactical model is not used in most other languages.

Using default values for some of the parameters ist also quite confusing, especially when they are trying to understand overloading. They are not sure which model, overloading or default parameters, is at work. Once I began using all the parameters for the procedures I used, for example iio.put(i,3); to specify the width, I had fewer questions to answer. This is perhaps another feature of Ada that is useful professionally, but confusing for beginners.

private parts in packages

The concept of separating the specification from the body of a package is readily understood by beginners. However, not all understand easily that the body may define additional procedures for local use which are not visible outside of the package. This public/private problem is compounded by the fact that the specification, which is not supposed to mention the private procedures, is forced to specify the private data structures in plain sight. The reasoning behind this is of course to make life easier on the compiler writer, but it is unfortunate that this chance to cleanly separate public and private parts by perhaps requiring an extra file for the private parts of the package was not taken.

put/get model outdated

The mental model used for the put and get procedures in Ada.text_io is built upon a model of a typewriter. One can only write in a forward direction, when a character has been written the carriage moves on to the next position, at the end of a line the carriage is returned to the first position and a line feed advances to the next line. The problem with this model is that we have had computers for text editing purposes for so long, that the current generation of beginning programmers may never have operated or even seen a typewriter in their lives! The model is completely foreign to them, and thus, they have a hard time understanding how to write to a file or to the standard output.

The expected model is for a cursor to move to a position in a window and to write at that position! I attempted to alleviate this problem by expanding Feldman and Koffman’s simple screen package to permit the students to use this model of output. Unfortunately, the ANSI-sequences used for this purpose are not properly executed on Windows NT machines. We have the situation for the Windows platforms that there is no longer an easy way to do simple cursor positioning, and beginners are not up to programming with Microsoft Foundation Classes. Even if there exists an Ada package offering a simple window environment for Windows, I am not sure that I want to have to discuss window models with beginners who are not yet firm on how to construct loops.

real�SONDZEICHEN 32 \f "Symbol" \s 12� �numbers�The beginning students are often interested in using real numbers right away, since they encounter them in currency calculations every day. But since they mostly do not have the background to understand the problems involved in rounding errors, it is better to just stick with integers for the first semester. As a compromise for currency calculations, the teacher could prepare a currency package for use without going into details.�In order to demonstrate to them the dangers involved with using real numbers without careful thought I use the following program from my colleague Ulrich Grude: We define��type REAL is digits 15 range 0.0 .. 5000.0; -- small but exact	�type INT is range 1 .. 500; -- for counting	�R : constant REAL := 3.0;	�X1 : REAL := 0.01;	�X2 : REAL := 0.01;	�WIE_OFT : INT;	��and then calculate two algebraically equivalent functions, reporting the results. Since the functions are equivalent, the results should be almost the same.��for I in 1 .. WIE_OFT loop	� X1 := (1.0 + R) * X1 - R * X1**2; -- x := (1+r)x-rx**2	� X2 := X2 + R * X2 * (1.0 - X2); -- x := x+rx(1-x)	� INT_IO.put (I);	� REAL_IO.put (X1,0);	� REAL_IO.put (X2,0);	� REAL_IO.put (X1/X2,0,5);	� text_io.NEW_LINE;	�end loop;	��Depending on the compiler and the machine the program is executed, any time between the 15th and the 315th iteration the results begin to diverge. The students first suspect that the compiler or the computer is "broken" until we get deeper into what exactly happens when we multiply real numbers.

arrays�The need for unconstrained arrays is not readily seen by beginners. They also do not see that the string data type is just a particular kind of array. What is confusing here is the shorthand use of "hello" to represent(’h’, ’e’, ’l’, ’l’, ’o’). Drawing pictures of the arrays as collections of boxes that have their index written on the front and their values contained in the box is helpful for one-dimensional arrays. Arrays of arrays are difficult for beginners to visualise, it can be helpful to draw pictures for them.

exceptions�The ease with which exceptions can be introduced in Ada is a major plus. The need for handling exceptions arises when the first constraint_error is raised during a program execution. Since one only need to define the block limits for the exception handling block, they can be explained and quickly inserted into a program that needs them. The flow of control is surprisingly easy to understand.

pointers�Once the beginners make it to the point where they have understood variables and records, it is easy to introduce pointers. Since Ada has typed pointers that can only point to the right kind of object, the programmer is forced to think the desired structure through. Many students have reported that after having learned pointers in Ada, it was very easy to get pointers right in C(++).

1.3 	The Compiler Environment

A good compiler environment for beginners is often completely different from a good environment for industrial use. Beginners are quite happy to just have an editor and one button each for "compile" , "link" and "run". They want to see the error messages merged into their texts, as counting lines is a lot of work, and they want their programs to look the same on the screen and on the printer. This means that we have to overcome the tendency of some Windows products for choosing a proportional font as the default one for printing when code is being output — it helps the understanding of nested concepts if the statements are properly indented.

Beginners are quite proud of their work when they have finally managed to get a program to produce output to the screen. They want a copy to take home and a copy to hand in. But since we work in a DOS-Box, there is not much more than PrintScreen that can be done to capture the output, which is unfortunate. Redirecting the output to a file is nasty if we also want to request input — the computer appears to be „broken„ as the request is logged to the file and the cursor waits for input. If all input and output were logged by default, we could just print out the logfile of the last run.

A possible solution is to implement a package test_io� that has the same interface as text_io. The implementation mirrors writing to the screen in a logfile, as well as all input. In this manner one can obtain a transcript of a program run just by changing one letter in the with-clause and recompiling the program before running it. For example, put is implemented like this:

procedure PUT (ITEM: in character) is� begin� ada.text_io.put(item => ITEM);� ada.text_io.put(item => ITEM, file => PROTOKOLL);� end PUT;

In this past semester I used ObjectAda from Aonix, which was included in the Ada-Tour CDs we obtained from competence center informatik GmbH, Meppen. We had a difficult time getting our "Hello World" programs to run — first we had to set up a project, this created a debug and a production directory, we had to choose a target machine and so on, all things that are wonderful for industrial use but quite confusing for beginners. When we finally got everything set up and running, we wanted to make a copy of the executable for taking home. The source files are hidden in a completely different directory from the executables, and the names of the directories are very difficult to type because they are so long and identical in the first 16 letters or so. This complexity is quite useful if you are in a production environment needing to cross-compile to multiple platforms and are using versioning software, but it is overwhelming for beginners. Many were anxious that their programs were "lost". The compiler environment for beginners needs to show clearly where exactly all the files can be found and allow for easy copy of the files to diskette.

1.4 	Summary

There are a number of factors that contribute to Ada being considered a complex and difficult language. While the compiler or the operating system is responsible for many of these complexities, there are quite a number of problems that arise from the expressive power of the language. But by not using many of the industrially useful features of Ada, many of the problems can be avoided that are confusing for beginners.

I still believe that Ada is a very good language for beginning programming instruction and that there are a number of good textbooks available. Unfortunately, my school has decided that it must cater to the whims of the students and will be teaching Java as a first language this semester. I wish my colleagues luck, I will concentrate on teaching other courses. The first question I had from the colleague who is preparing the lectures perhaps tells of what is in store for them. He wanted to know if there wasn’t an easy way to just read in two numbers from the standard input stream so he could add them and display the results. No, he either has the choice there of creating a panel and putting two input and an output box on it, or of fiddling with streams and casting to get at the integer values. I hope to be able to report at some future Ada-Deutschland meeting that we are returning to Ada.

1.5 	Bibliography

[Dut94] Dutke, Stephan. Mentale Modelle: Konstrukte des Wissens und Verstehens — kognitionspsychologische Grundlagen für die Software-Ergonomie. Verlag für angewandte Psychologie, Göttingen,1994.

[Ebr94] Ebrahimi, Alreza. Novice programmer errors: language constructs and plan composition. In: International Journal of Human-Computer Studies 41, Sept. 1994, S. 457-480.

[FK 92] Feldman, Michael B. and Koffman, Elliot B. Ada: problem solving and program design. Addison-Wesley, Reading, 1992.

[Hor98] Hornecker, Eva. Programmieren als Handwerkszeug im ersten Semester. In „Informatik und Ausbildung„, V. Claus (Hrsg.) Springer Verlag, Heidelberg, 1998.

� My colleague, Ulrich Grude, is fond of saying: "You can program efficiently but not portably in C, or portably but not efficiently in Java, or just use Ada to have both! "

� Idea and implementation by Ulrich Grude. In his version the input is also collected in a separate file, so that it can be used as test input for future reference.

