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Abstract

We describe techniques for parallelizing rendering
applications on a distributed-memory multicomputer
(MANNA) that is linked to a high-performance polygon
rasterizer (VISA).

Several multicomputer nodes and rasterizer channels are
interconnected by a highly configurable hierarchy of
crossbars. Projected primitives are distributed from
computing nodes to rasterizer channels according to
their screen regions.

An application prototype for real-time visualization of
particles in a flow field from the automotive industry is
implemented on this hardware platform.

The system enables a user to place a particle stream
interactively in a simulated flow field in order to gain
insight into the characteristics of the flow field. The
huge amount of data requires that both the evaluation of
the flow field and the visualization of the scene be paral-
lelized.

The software architecture of the application prototype is
based on the MPSC (Modifier Presenter Sensor Control-
ler) model. We explore how it benefits from the pre-
sented scalable hardware architecture in order to meet
the requirements of a highly interactive system.

Keywords: Parallel Rendering, Computer Archi-
tecture, Scalability, Latency Hiding, Screen Subdivi-
sion, Triple Buffering, MPSC model, Parallel and
Distributed Applications, Real-time systems

1. Introduction:  Parallel Rendering
Applications like the prototype for interactive flow-field
evaluation presented below, requirenot only enough
computing power for computation of the particle
attributes,but also the ability to rapidly render vast
amounts of graphical data. To increase the performan
of a given graphics system, numerous approaches h
been developed in order to use more than one process
unit in parallel. On general-purpose architectures, diffe
ent levels of parallelism can be exploited, ranging from
parallelism in the processor itself, to multiple processo
operating on shared memory, to distributed-memo
systems communicating via network topologies. A wid
range of rendering algorithms from surface to volum
visualization, with local or global illumination, has been
investigated and parallelized.

The rather simple local (or direct) illumination of sur
faces via the corresponding Gouraud and Phong-sh
ing algorithms has been integrated into dedicate
hardware systems that speed up three-dimensional vi
alization in high-end workstations [1]. These renderin
pipelines typically consist of a geometry unit tightly
coupled to a rasterizing unit with associated imag
depth and auxiliary buffers. As technology ha
advanced, these systems have been able to process m
and more triangles per second, producing an increas
number of pixels. But today’s applications, especially i
the domain of virtual reality and visual supercomputing
still demand higher triangle and pixel rates than a sing
system can provide. Thus it is only natural to investiga
whether and how multiple instances of geometry an
rasterizing units can be combined to scale to an ev
more powerful system.
- 1 -- 1 -
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In general there are two approaches to scaling a single-
pipeline to a multi-pipeline system as shown by [2]. A
complex scene is arbitrarily distributed to the geometry
units, and its complete image can then be either com-
posed of full-screen images of parts of the scene (com-
position approach) or of partial images of the whole
scene (screen partitioning/ subdivision approach).

Objects projected by a geometry unit may cover an arbi-
trary screen region. If the geometry unit is directly con-
nected to one rasterizer - the typical case in today’s
commercial single-pipeline systems - each rasterizer
must be assigned to the whole screen region, which
means that only the composition approach holds when
scaling to more units (see [3]). The main drawbacks of
this approach are the need for complicated and expen-
sive composition hardware restricting the range of
attributes per pixel, and the restrictions on load balanc-
ing between the fixed geometry and rasterizing units.

If it is possible to redistribute the projected triangles
from one geometry unit to an arbitrary rasterizer unit,
the entire screen region can be divided into disjunct
regions that are assigned to individual rasterizers. Com-
bining these disjunct regions to form a single image is
considerably less complex, as there is no need for per-
pixel compositing operations. What is more, it permits
advanced local attributes per pixel and allows more effi-
cient load balancing between geometry and rasterizing
modules. The main drawback is that there has to be an
efficient redistribution mechanism from geometry units
to rasterizers for this screen subdivision approach to
work.

Both approaches assume some arbitrary distribution of
the scene data over the geometry units in the form of a
retained database. Two things have to be taken into
account in this assumption. First, the computational
complexity of any subset of the scene is neither constant
nor completely predictable, so there has to be some kind

of dynamic data redistribution to avoid load imbalance
The distributing and load balancing of a scene on a mu
ticomputer has been investigated in several stud
[4][5]. Second, any change the application wants
make to the retained database involves communicat
with the geometry units. Depending on the type of app
cation - whether a retained or immediate mode of oper
tion is used - this communication can become qui
extensive and it usually has to be carried out via a sing
connection from a host to the graphics system.

To sum up, we have found that scaling the tradition
rendering pipeline always involves object-space par
tioning in the geometry stage whereas the rasterizati
stage can be scaled by either object- or screen-sp
partitioning. General-purpose multicomputers usual
have a communication network that allows primitives t
be redistributed from object- to screen-space partition
so they often use the screen-subdivision approach. De
cated rendering pipelines with their single connectio
fromgeometry unit to rasterizer do not offer this redistr
bution network and thus tend to apply the image comp
sition approach.

2. The MANNA/VISA Architecture
We present a combined architecture consisting of t
general-purpose multicomputer MANNA [6][7][8]
(Massively Parallel Architecture for Numerical and
Non-numerical Applications) that closely integrate
application with geometry processing and dedicate
high speed VISA(VISualization Accelerator) rasteriz
ers [9][10][11] . The rasterizers are directly connecte
to the multicomputer’s interconnection network and ca
thus be fed with projected objects using the screen-su
division approach. The following sections outline th
fundamental advantages of the architecture when ru
ning a graphics application.

Figure 1:
- 2 -- 2 -
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Figure 2: VISA pipeline
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2.1. Scalability

2.1.1. Interconnection Network

The individual MANNA nodes are interconnected by
highly configurable hierarchy of crossbars. Each cros
bar offers 16 byte-wide bidirectional connections wit
a transmission rate of 2 x 50 MB/s. A single rack con
tains 20 nodes connected via a two-crossbar backpla
with up to six bidirectional intercrossbar connection
(Figure 3). Multiple racks can be connected via a
asynchronous ECL connection to provide theoretical
unlimited scalability. The hierarchical crossbar topo
ogy has been shown to have the same favourable blo
ing behaviour as the hypercube, but with only on
connection per node instead of log N [12].

2.1.2.  Screen Subdivision

Given this fully connected network, it is only natural to
apply the screen-subdivision approach for scalin
beyond a single-pipeline system. Scalability is su
ported at three levels:

Figure 3: 20 node MANNA with twoclusters
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  •   the application and geometry stage

  •   the rasterizer stage

  •   the frame-buffer stage

At the first level, if more processing power is neede
one can connect several MANNA racks by a hierarch
cal crossbar topology. The additional network latency
contention using a hierarchy of crossbars is negligib
and dominated by a constant latency of the system so
ware [6].

Figure 4: Subdividing triangles
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Figure 5: MANNA/VISA architecture
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buffer part (Figure 2). The rasterizer offers a sustained
input bandwidth of 37 MB/s, which equals roughly
550,000 to 580,000 triangles/s generated with a sus-
tained pixel rate of 36 million per second (MP/s). The
input bandwidth of the IMAGE bus and the frame buffer
is 40 MP/s.

To achieve higher triangle rates, it is possible to connect
up to four rasterizers that work together on one IMAGE-
bus/frame-buffer system if the input bandwidth of the
IMAGE bus is sufficient.

To also achieve higher pixel rates, the VISA pipelines
(rasterizer and frame buffer, see Figure 2) are assigned
to horizontal slices of a single frame (Figure 5). Four
pipelines, for example, attain a maximum pixel rate of
160 MP/s via horizontal screen subdivision. Several
channels can also operate in stereo and/or time-sequen-
tial mode to increase the frame rate. In split-screen
mode, the horizontal slices of the different frame buffers
are vertically synchronized to the video frequency (135
MHz) by means of PLL circuitry. The horizontal slices
of each displayed frame can be adjusted dynamically by
a workload-monitoring process.

To avoid the overhead of processing the same scanlines
in different VISA rasterizers, triangles that cover two or
more horizontal slices of the actual frame are split (see
Figure 4).

The additional computing overhead for splitting one tri-
angle into a triangle and a trapezoid can be roughly esti-
mated as follows:

• determination of triangle covering two regions (~ 4
OPs),

• computation of new LY for region 0 (~ 1 OPs),com-
putation of new start coordinates YS, XSL, XSR,
(~ 7 OPs),

• computation of new ATTRibutes at new XSL, YS
position (~ 4 OPs per attribute).

Using four attributes - Z and (R, G, B) for Gouraud
shading, or Z, Nx, Ny and Nz (components of the no
mal vector) for Phong shading - results in approximate
28 operations overhead for every split triangle. Consi
ering that a rasterizer can generate one pixel every 25
one can easily determine the point on which subdividin
the primitives becomes more expensive than drawi
them twice. A good estimate is in the range of 20 to 3
overlapping scanlines. Typical image statistics of V
applications show that only a small percentage of the t
angles in one frame cover 50 - 80% of the total scre
area [13]. This means that the computational overhe
for splitting polygons is very low compared with the
speed gained by rasterizing large triangles only once.

2.2. Configurability

A further advantage is that application and geomet
processing can be mapped to the general purpose no
in a very flexible manner. Analyzing the application, th
numerical effort for application and geometry proces
ing can be estimated, resulting in a mapping from com
puting power to application requirements. If the
communication cost can be neglected, the nodes can
divided into geometry and application processors.
other cases, integration of application and geomet
processing in one node avoids remote data transmiss
and can reduce the time complexity of the application

Figure 6 shows the configurations of three differen
applications. The left side of the figure depicts an app
cation with low geometry-processing requirements
relation to the application-processing requirements (
e. g. in rigid body simulations where only transforma
tion matrices are transmitted to the geometry process
- 4 -- 4 -



GAA G A G GA
G

A
G

MANNA-nodes

...

Interconnection
network

rasterizer

A G geometry processing

rasterizer

application processing

rasterizer rasterizer rasterizerVISA

......

s
s
c-
t-

ed
t-
S

for
s

a-
li-
be
f

Figure 6: Different configurations
[13]).

Screen subdivision with integration of application and
geometry processing is shown in the middle. The right
side of the figure shows a geometry-processing-inten-
sive application in stereo mode.

In principle, all three applications can run in parallel on
a large MANNA system connected to different VISA
systems. In practice, though only one VISA system
with up to four rasterizers is used.

2.3. Latency Hiding

Interactive applications require immediate feedback to
their actions, which means there can be little tolerance
of unnecessary system latency.

2.3.1. CP/AP Mechanism

The MANNA node employs two i860XP processor
sharing a fourfold-interleaved memory with 400MB/
access bandwidth (Figure 7). It also contains a bidire
tional high-speed interface to the interconnection ne
work with a bandwidth of 50 MB/s per direction. Using
both processors for the application yields a sustain
performance of 68 MFLOPS compared with its theore
ical peak performance of 100 MFLOPS and 100 MIP
simultaneously [6].

If communication cost is relatively high in relation to
the computational cost, one processor can be used
communication. The CP/AP-mechanism [14] reduce
general communication latency by decoupling applic
tion and communication processes. For graphics app
cations, there are two areas in which this scheme can
effectively applied. One is the distribution process o

G

Figure 7: MANNA node

memory banks

LINK

i860XP

i860XP
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Figure 8: Triple buffering
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geometry objects from one computing node to another
for the purpose of load balancing. The other is the
above-mentioned setup and transport of projected trian-
gles to the appropriate rasterizers. Both processes are
communication intensive and can be decoupled from
the application, which can thus continue immediately.

2.3.2. Triple Buffering

Another source of latency arises in the frame-buffer sys-
tem by the use of double buffering. The last frame is
usually displayed from one buffer, while the current
frame is generated into the second buffer. Before the
generation process can go on to the next frame, it has to
wait for the current display process to finish. This
results in a considerable idle time of the rasterizer, and
thus in a reduction of the effective frame rate. Using a
third buffer decouples the generation and display proc-
esses and leads to an increased frame rate - as can be
seen in Figure 8.

The performance gain is largely dependent on the dis-
play-refresh rate, the generator rate and its variation.
The example in the figure assumes a display-cycle time
of 13.33 ms (75 Hz) and a generation time between 37
and 60 ms (17 to 27 Hz).

In a single frame-buffer system, triple buffering can be
applied by reducing the screen resolution to 1024x1024
pixels. This results in a division of the available frame
memory into four equal partitions. When using two
frame buffers in subdivision mode, there is enough

memory to maintain a resolution of 1280x1024 pixel
Three frame buffers allow for even higher resolution
and more flexibility in screen subdivision (dynami
screen partitioning). Thus, scaling to more frame bu
ers not only increases the performance; the addition
frame memory can be used to reduce latency as well

.

    1     2

     3

      1
      2

      3

     1

      3

     2

Figure 9: Partitioning frame memory for triple
buffering with one or two framebuffers
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3. Interactive Flow-Field Evaluation
on the MANNA/VISA Architecture
To evaluate the suitability of the above hardware archi-
tecture for visual supercomputing applications, we have
built an application prototype for the interactive evalua-
tion of a flow field from the automotive industry. We
already had some experience in this field from our pre-
vious implementation of such an application prototype
on a SGI platform [15], but the distributed-memory
architecture presented, promised us with new possibili-
ties and challenges. In this section we address some of
the problems encountered when building an applica-
tion prototype, motivate our approach, and finally
present the results, we obtained. When we started this
work, our clear objective was, tobothcompute the par-
ticle positionsand render the particles together with
their context information on the MANNA / VISA archi-
tecture. The functionality mapping to the frontend and
the MANNA / VISA system is shown in Figure 10.

Figure 10: Functionality mapping to the hardware envi-
ronment

However, many important questions could not b
answereda priori, e. g.: How many particles is this sys-
tem able to compute? How should the computin
resources be partitioned between particle computati
and rendering in order to satisfy the real-time con
straints? The key to handling such unknown factors w
to apply a highly configurable software design to th
application prototype, enabling the hardware configur
bility features to be exploited and various configuration
to be explored with respect to their efficiency. This le
us to use the MPSC (Modifier Presenter Sensor Contr
ler) model as a guideline for the internal software stru
ture of the system. This model is sketched here only
the necessary detail, further details can be found el
where [16].

3.1. The MPSC Model

MPSC is a functional domain-decomposition model fo
partitioning distributed virtual environments into fou
different domains, each domain being characterized
the presence of a particular functionality, as shown
Figure 11. These domains are the modifier, the pr
senter, the sensor, and the controller domain. The p
senter and the sensor domain can together be though
as a frontend of the system associated with the hum
user; the modifier and the controller domain together
a backend.

Figure 11: The MPSC model

In the present care, the task of the presenter domain is
provide objects, that are able to render the particles a
the context data. The task of the sensor domain is
deliver input data from an input device operated by
human user. The task of the modifier domain is to pr
vide objects that are able to modify the scene data,
our context the particles and their attributes.
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   Figure 12: The application prototype, a snapshot of the running system.
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Finally, the task of the controller domain is to connect
the objects in the previously mentioned domains.

3.2. Flow-Field Evaluation

For the flow field evaluation, which in our case corre-
sponds to the modifier functionality in terms of the
MPSC model, we useparticle-simulatorobjects. These
objects contain a copy of the flow field and a pool of
active particles. Evaluation of the local velocity of the
particles is done in this static flow field on a regular grid
with trilinear interpolation, and the integration of a par-
ticle trace is done by a fourth-order Runge-Kutta
method [17].

The particle-simulator objects have the methodAddPar-
ticle, in which the positions of new particles can be
specified and the particle attributes computed for the
next time step. In order to satisfy the real-time con-
straints and to make the computation time more predict-
able, the size of the particle pool is limited. If the
particle pool is full, the newly specified particle starting
positions have to be omitted. Particles become extinct
and make room for the insertion of new particles into
the pool either because they are leaving the flow field or
because their lifetime exceeds an upper boundary. We
use an upper-boundary default of 150 time steps, which
corresponds to a lifetime of 7.5 seconds assuming 20
time steps per second.

3.3. Creating a Geometric Represen-
tation

For each particle simulator, there exists one associa
indexed triangle-listobject. These objects are not a
mere data aggregation, they also have the ability
render the contained triangles using the VISA hardwa
[18]. The size of such an object satisfies the spa
requirements of a full particle pool of the associate
particle-simulator object. This means that dynam
memory allocations can be avoided during runtime, th
making the runtime behaviour of the system more pr
dictable. To create a geometrical representation, the p
ticle positions in the FEM space are transformed in
the world coordinates, and a triangle with its centre
that point is inserted into the triangle list. In this way
the local velocity is mapped to the colour of the triangle
If these triangle lists are filled with the geometrical rep
resentations of the particles, they can be treated in t
same way as the triangle lists that contain the conte
data.

4. Results
With an internal software structure of this sort we wer
able to explore various mappings from the objects, th
represent the functionality in a particular domain, to th
nodes of the MANNA system. The peak performanc
- 8 -- 8 -
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we achieved was approximately 23 frames per second
with up to 5,000 particles, Figure 12 shows a snapshot
of the running system. This application prototype
greatly benefits from the fact that - thanks to the hard-
ware architecture - each node at which the particles are
computed can also be used for the geometry processing.

We also configured the system to do particle computing
and geometry processing on separate nodes in order to
simulate heterogeneous architectures. In this case, the
particles have to be transferred to the renderer nodes.
Here, the size of the particle pool plays a key role,
because the smaller the particle-pool size, the greater
the communication costs, relative to computation costs.
The communication costs can be reduced by computing
the particle attributes for several time steps in advance
and then transferring them in one message. This means
a trade-off between communication costs and increased
memory requirements, because we have to keep the par-
ticles for several time steps at both the sending and
receiving nodes. We call the objects that keep the parti-
cles for several time stepsfuture nodes;Figure 13
shows an example in which we compute 2 resp. 4 time
steps ahead. In all, 1951 particles were computed and
transferred, which means that the average particle-pool
size is approximately 30 particles. We observe that these
curves oscillate with a period of two and four, which is
due to the fact that the particle pools only have to be
transferred every 2nd and 4th time step.

Figure 13: Measured times, when computing particles 2
and 4 time steps in advance

In Figure 14, we normalized the measured times, so
that the relative time used for the particle transfer with-
out bundling is always 1.0. Thus we observe that the
curves in Figure 13 converge to approximately 0.85 in
the case of 2 time steps, and approximately 0.77 in the
case of 4 time steps, which reflects the time gain of the

eliminated object transfers.

Figure 14: Normalized times of the data from Figure 1

5. Conclusion and Future Work
In this paper, we have presented an architectural alter
tive to the traditional graphics workstation. Its outstand
ing features are latency minimization and wide-rang
scalability. A lot of work still needs to be done to inves
tigate load-balancing mechanisms as well as distrib
tion algorithms for several types of applications. Ou
current research is concerned with the evaluation of t
existing architecture and its further development. Th
includes the design of a next-generation computin
node, advanced mechanisms like adaptive routing in t
interconnection network, and a new rasterization ASI
including real-time texturing and bump mapping.

With the implementation of the presented applicatio
prototype, we have shown that such an architecture c
be used for visual supercomputing. The ability to com
pute a vast number of particles in real time on the pr
sented architecture allowed us to obtain insights into t
characteristics of the flow field under study, that are n
attainable with a similar implementation on a graphic
workstation. With the appropriate software structure, a
application can greatly benefit from the configuratio
capabilities of the hardware. Such flexibility is achieve
by means of the MPSC model, which is a functiona
domain-decomposition model for parallel and distrib
uted virtual environments. Our object-oriented proto
type implementation of the MPSC model serves as
research platform for studying various aspects of di
tributed multi-user virtual environments. It enables us
use the computing power of parallel architectures lik
the one presented and to integrate them in a distribu
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