SPECIAL ISSUE OF THE JOURNAL OF REAL TIME IMAGING ON "REAL TIME MOTION ANALYSIS” 1

An Algorithm with Logarithmic Time Complexity
for Interactive Simulation of Hierarchically
Articulated Bodies Using a Distributed-Memory
Architecture

Thomas Jung

Abstract— The dynamic simulation of large systems of hier-
archically articulated bodies is very time-consuming and
cannot be done in real time using current one-processor
workstations. This paper discusses the parallelization of dy-
namic simulation algorithms for such systems. First, the me-
thods used in computer animation for solving initial-value
problems are compared. Using test suites based on arti-
culated bodies, the Gear method for non-stiff problems is
identified as the solver with the least right-hand-side evalua-
tions of the differential equations for the executed tests. On
the basis of this method and the articulated-body method, a
”simulation engine” for distributed-memory architectures is
presented. By reimplementing the Gear method and rear-
ranging its parts, logarithmic time complexity is achieved
for hierarchically articulated bodies. By using the simula-
tion engine, interactive, physically based animation of large
articulated figures is possible.

Keywords— Articulated figures; dynamic simulation; inter-
action; distributed-memory architecture; logarithmic time
complexity

I. BACKGROUND
A. Interactive Simulation of Articulated Figures

Interaction has proved to be a powerful technique for
generating animations or exploring virtual worlds. To in-
teractively manipulate physically based scenes, real-time
simulation algorithms are needed. Various investigations
have been carried out to simulate the motions of articula-
ted figures using rigid-body dynamics[1], [2], [3], [4], [5], [6].
Most of them are unsuitable for interactive control. Efforts
have been made to speed up simulation so as to allow in-
teractive manipulation of small or medium-sized figures[3],
[7], 6], [8]-

The simulation of large systems of hierarchically articu-
lated bodies (HABs), e.g. human models with more than
30 degrees of freedom, enables more sophisticated models
of human beings or creatures to be obtained. Real-time si-
mulations for these figures are not be feasible using current
one-processor workstations. There are two possible ways of
speeding up the solution of the initial value problem, which
1s required for interactive manipulation of physically based

HABs:

¢ reducing the number of sequentially computed soluti-
ons of the forward-dynamics problem (right-hand-side
evaluations of the differential equations) per second,
or

¢ reducing the time complexity of the forward-dynamics
algorithm

T. Jung works for the GMD — the German National Research
Center for Information Technology, Research Institute for Compu-
ter Architecture and Software Technology, Berlin, Germany. E-mail:
tj@first.gmd.de .

B. Solving the Forward-Dynamics Problem

There are basically two approaches for solving the
forward-dynamics problem:

¢ calculating recursion coefficients with propagation of

motion and force constraints along the mechanism, al-
lowing the problem to be solved directly, or

¢ obtaining and then solving a set of simultaneous equa-

tions in the unknown joint accelerations.

The second approach (e.g. the composite-rigid-body me-
thod[9]) allows more flexibility of control by specifying
constraint equations[10], but it can only achieve a O(n?)
computational complexity. In systems based on this ap-
proach, simulations are not executed in real time [1], [4],

For interactive control of dynamic simulations, the first
approach (e.g. [11], [12], [13]) is preferred [3], [6], because
it has only linear computational complexity. Featherstone
shows[14, p. 151] that the articulated-body method[12]
(definition given in appendix) is faster for articulated figu-
res with more than 9 degrees of freedom than the version
of the composite-rigid-body method given in[14].

The articulated-body method can be extended to handle
loops (e.g. resulting from contacts with the environ-
ment)[13]. The computational complexity is not worse than

O(n) + O(1?) for I internal loops.

C. Solving the Initial Value Problem

There is no agreement on the choice of a solver for anima-
ting articulated figures. Some authors prefer Runge-Kutta
methods [10] because of their ease of use. Information from
the previous steps is not needed, so adaptive variation of
step size and discontinuous force functions (e.g. in collision
situations) can be easily supported.

Multistep methods use information from previous steps
to reduce the number of right-hand-side evaluations. Using
the Nordsieck-history representation [15], the starting of
the solver can be avoided, and adaptive step-size control-
ling can be carried out.

The Gear method changes not only the step size, but also
the order of the interpolation polynom adaptively. Imple-
mentations of this method are available in FORTRANJ15],
[16].

Other methods are available, but they are not suited to
the animation of articulated figures (e.g. too many right-
hand-side evaluations in extrapolation methods) or they
are currently under investigation (e.g. cyclic multistep me-
thods[17]). Special methods should be used for stiff situa-
tions (e.g. BDF formula [15]).

Green proposes a test suite allowing the experimental
comparison of some solvers [18]. He uses a small set of diffe-
rential equations to simulate linear and non-linear problems
with discontinuities and stiffness. The Adams method was
the most efficient in the tests[18].

D. Parallelization of Simulation Algorithms

There are two ways of parallelizing simulation algorithms
¢ across time, and
e across space

2 SPECIAL ISSUE OF THE JOURNAL OF REAL TIME IMAGING ON "REAL TIME MOTION ANALYSIS”

Small-scale across-time approaches are available for spee-
ding up Runge-Kutta methods[19]. Large-scale across-time
approaches would need knowledge about the future that is
not available in interactive dynamic simulations.

Large-scale parallelization can only be carried out across
space for large systems of HABs. Some attempts are made
to parallelize parts of the composite-rigid-body method
[20], [21]. A parallel version of the composite-rigid-body
method with time complexity O(n?), and a parallel version
of the conjugent-gradient method [9] with time complexity
O(n * log(n)) are given in [22]. A small-scale paralleliza-
tion of the Gear method for a shared-memory architecture
is given in [23].

Parallel simulation algorithms are also used in [3], [24],
but no detailed description is given.

Following[25], Lee and Chang show[22] that the time
complexity of the articulated-body method cannot be redu-
ced for any linearly chained rigid bodies by parallelization.
However, parallelizing the method for HABs will reduce
time complexity.

II. EXPERIMENTAL COMPARISON OF SOLVERS

The most efficient methods should be considered for par-
allelization. To solve the forward-dynamics problem, the
articulated-body method is the method that should be cho-
sen. However, there is no agreement on which method
should be chosen to solve the initial-value problem. For
this reason, a test suite for comparing solvers based on
HABs has been developed.

A. Dynamic Model

Different shaped bodies merely result in different con-
stants in the same differential equations. Because of this
the shape of a body ought to be less important than the
structure of the articulated figure. Different constants can
also be obtained by scaling a single rigid body. Conse-
quently, only one type of body is used for the test suite
(see Figure 1). This should facilitate reconstruction of the
experiments conducted. The dynamic description of the
body is given in Appendix B.

Fig. 1.

Wedge-shaped rigid body

Hierarchical mobiles are constructed on the basis of these
bodies. A so-called mobile consists of s stages. At the root
of the mobile is a single chain forming the first stage. At
the end of this, and every other chain, hangs a plateau. O
chains hang on each plateau these again ending in plateaus.

TABLE I
PARAMETERS OF FIGURE 2

a b c h s
0.2 01 02 05 3

Il o p 0
4 5 20 20

All chains have [links, including the plateau. All bodies
in the tree have the same a-values and the same heights A.
All bodies that are not plateaus have the same values for b
and ¢ (see Figure 1). Since plateaus have circular bottoms,
their b-value is zero. The radius of the bottom depends on
the stages hanging on the plateau. The radius of the tree’s
leaves which are also plateaus, is the sum of the values ¢
and b from links that are not plateaus.

For all other plateaus, the following rules are valid: All
chains hang at the brim of the plateau. The outer corner
of every body’s upper edge cuts the brim. The lines exten-
ding the upper edges of the chains hanging on the plateau
intersect at the center of its bottom.

Fig. 2. Mobile

The radius ¢ of the plateau is (’%)k, where k is the num-
ber of stages of the ”submobiles” hanging on the bottom
of the plateau. The length of the arc between two neigh-
boring chains at the stage containing the leaves of the tree
18 p.

The axis of the rotational joint linking two bodies is the
upper edge of the first body and lies in the plane of the
bottom of the second one crossing its center. The joint
axes of the links of a chain are parallel.

Using these definitions, many mobiles can be generated
by varying only nine parameters (including the density g,
which is equal for all bodies). For example, the mobile in
Figure 2 can be described by the parameters given in Table
L.

Given zero joint values, velocities and forces, the mobiles
do not move in a gravitational field. The amount of mo-
tion can be controlled by varying the start position of the
mobile.

In all the experiments described in this paper,
the forward-dynamics problem is solved by using the

JUNG: AN ALGORITHM FOR INTERACTIVE SIMULATION OF HIERARCHICALLY ARTICULATED BODIES 3

TABLE II
THE USED SOLVERS WITH THEIR ABBREVATIONS

Abbr. Method order step size
control
IEC Improved Euler-Cauchy 2 SD
RKI Runge-Kutta I 3 EF
RKG Runge-Kutta-Gill 4 SD
RKF Runge-Kutta-Fehlberg 5 EF
Gear Gear method for * *
non-stiff equations
BDF BDF method for stiff equ. * *

articulated-body method.

B. Selection of Solvers

Since there are many different versions of solving me-
thods, an appropriate selection of solvers must be made.
For the following experiments, four different Runge-Kutta
methods, an adaptive-order Adams method (the Gear me-
thod for non-stiff problems with the stepsize control from
Hindmarsh [16]) and a method suited to stiff differential
equations ("lsode”, based on Gear’s BDF-method [16])
were chosen (see Table IT). All methods use adaptive step-
size control. For the Runge-Kutta methods, step size is
controled by step doubling (SD) [15, p.81] or by using
Runge-Kutta methods with different orders (embedding
formulas, EF). Details are given in [26].

To verify the Ct+ implementations of the solvers, simu-
lations using the test suite of Green[18] are executed. The
number of steps used by the described implementations are
similar to those of Green[26].

C. Test Conditions

Since the different step-size control mechanisms are ba-
sed on different error-estimation strategies, the chosen error
tolerance may influence the results of the comparison. For
example, a solver with a pessimistic error estimation could
achieve better results with larger tolerances, whereas a
smaller error tolerance should be given to a solver with
an optimistic estimation. For this reason, all tests are exe-
cuted with five different error tolerances (relative and ab-
solute) from 1072 to 107°. Only the best result for each
solver is considered.

To assess the performance of a solver, the number of
right-hand-side evaluations per second is used. In general,
the numerical effort required by the solver can be neglec-
ted compared to that, required by the forward-dynamics
algorithm (e.g. a Runge-Kutta method with f function
evaluations per step needs only f % n multiplications per
right-hand-side evaluation, whereas the articulated-body
method needs 300 * n multiplications, n being the number
of degrees of freedom).

To ensure the interactivity of a simulation over the whole
simulation interval, the maximum number of right-hand-
side evaluations per second can be considered. If the ave-
rage number of evaluations allows real-time simulation, but

TABLE III
PARAMETERS OF MOBILES

Session h s l 0 p
A) 100/0 1 2...12 - -
B) 1.0 2 3 3...11 3.0
C), D) 1.0 1 4 - -

many more evaluations per second are needed in some in-
tervals, the simulation will temporarily slow down. If the
length of the interval is shorter than the length of the inter-
val between two frames, no visible effect will be noticeable.
If its duration is greater, a waiting period must be accep-
ted. To avoid this effect, a minimal step size can be given in
many solvers, but this might result in stability problems.
The use of the maximum number of right-hand-side eva-
luations per second is discussed in [26]. In the following
tests, the average number is given as a suitable measure
for assessing the time required by the solver.

If simulation is used to predict the behavior of a real
system, the error of the simulation has to be considered.
Fortunately, large errors are acceptable in computer ani-
mation because, in general, only the visual impression is
of major interest. Thus, only instable solutions (resulting
from too large error tolerances) are removed from the fol-
lowing tests. In each test, ten seconds of real time are
simulated using a SUN4/75C workstation.

D. Results

The following four test sessions represent several tests
carried out to identify the fastest solver. An overview of
the varying mobile parameter is given in Table IIT (the
values ¢ = 0.2, 56 = 0.3, ¢ = 0.2 and g = 2.0 are fixed for
all tests). Animation is generated by giving the mobile a
start elongation of 0.8 radians in the gravitational field of
the Earth. The start velocities are zero; external forces are
not specified.

In the first two sessions (Tables IV and V), the depth and
breadth of the mobile are varied. The larger the mobile,
the more right-hand-side evaluations are needed. In every
case, the Gear method 1s more than twice as fast as the
best Runge-Kutta method (RKG). To simulate wide trees,
the Gear method does not need more evaluations than for
long chains (e.g. 11 chains with 36 joints vs. 12 linearly
jointed links). Thus, if large articulated figures are to be
simulated, the Gear method should be the one chosen.

In general, there is a dependency between the step size of
the solver and local changes in the solution function. Since
the change of the position as a function of time is expressed
as velocity, fast-moving mobiles should be considered.

In session C), the velocity is varied by giving the mobile
start elongations from 0.1 to 1.7 radians (in steps of 0.4
radians). The different potential energy at the beginning
of the simulation transforms to different kinetic energy (and
hence different velocities). The number of evaluations does
not increase by more than a factor of two when using the
Gear method in this session (see Table VI). Thus, it is also

4 SPECIAL ISSUE OF THE JOURNAL OF REAL TIME IMAGING ON "REAL TIME MOTION ANALYSIS”

TABLE IV
SESSION A) VARIATION OF THE NUMBER OF LINKS

links number of evaluations

1IEC RKI RKG RKF Gear BDF
2 63.4 90.0 85.6 b88 154 27.1
4 108.2 301.2 109.6 1206 34.1 79.2
6 135.0 498.6 155.6 165.0 46.4 108.6
8 179.8 680.4 168.4 210.0 64.7 161.6
10 215.0 903.6 187.6 252.6 81.1 229.2
12 2344 1046.1 200.0 2964 91.6 203.3

TABLE V

SESSION B) VARIATION OF THE NUMBER OF CHAINS

number of evaluations

IEC RKI RKG RKF Gear BDF
3 186.8 784.8 197.2 211.2 596 3954
5 189.6 836.7 1952 2184 61.3 460.7
71972 8205 187.6 217.2 545 4375
9 2456 11376 202.8 280.2 65.0 1062.0
11 3104 1692.9 271.2 388.2 852 1584.1

the preferred method for fast-moving HABs.

The application of actuator forces can result in discon-
tinuities (e.g. in the case of collisions) and stiff situations
(limited time intervals, where the equations are stiff). In
the case of discontinuities, the only thing to do is restart the
solver. However, stiffness 1s a more serious problem in the
real-time simulation of large systems of HABs. To simu-
late the impact of stiffness on the solver, viscous damping
is introduced. A joint force (@Q; = —kyise * ¢;) is applied
to each joint. The viscous coefficient is varied from 0 to 10
in steps of 2.5 in test session D). The chain has four links;
the start elongation is the same as that in the sessions A)
and B).

Methods for non-stiff problems should not be used to
solve stiff differential equations. Table VII shows that for
stiff problems the BDF method is superior to the other te-
sted solvers. In general, however, the BDF method cannot
be chosen. In the case of large systems of HABs, its nu-
merical cost increases rapidly with the number of degrees

TABLE VI
SESSION C) VARIATION OF START ELONGATION

start pos. number of evaluations

IEC RKI RKG RKF Gear BDF
0.1 1258 263.4 108.8 133.2 445 624
0.5 1286 438.0 127.2 160.8 465 79.1
0.9 1714 5916 1748 185.4 50.6 156.2
1.3 2094 963.0 2332 237.0 71.8 266.8
1.7 2142 1189.2 325.6 2982 82.7 361.7

TABLE VII

SESSION D) VARIATION OF THE VISCOUS DAMPING FACTOR

viscous damp. number of evaluations

IEC RKI RKG RKF Gear BDF
0.0 158.0 505.5 1567.2 1746 48.1 120.2
25 3104 318.0 4164 380.4 3716 273
5.0 5822 640.8 9852 7026 T766.5 305
7.5 9544 946.8 1557.2 1026.6 1227.7 304
10.0 1110.0 1260.9 2040.0 1369.2 1609.0 26.5

of freedom (see e.g. Table V), because the method needs
to compute the jacobian of the system, which has at least
an O(n?) complexity. If there is no method for solving stiff
differential equations with linear complexity, real-time si-
mulation of large articulated figures will not be possible in
stiff situations.

If one of the solvers that are unsuitable for stiff equati-
ons 1s used, stiff situations should be avoided in interactive
simulations. Actuator models should be analyzed with re-
spect to their impact on stiffness.

If stiffness is avoided, the Gear method is the fastest me-
thod in all tests. Thus, a simulation engine for interactive
manipulation of large systems of HABs should combine this
method and the articulated-body method, if a large-scale
parallelization is possible.

I11. DISTRIBUTED SIMULATION ENGINE

This section describes the distributed simulation engine.
First, parallelization of the articulated-body method is car-
ried out over the breadth of the tree. Consideration of the
exchange of data in a distributed-memory environment and
the linear computational complexity of the solver result in
parallelization of the Gear method as well. To distribute
the method, parts must be rearranged. Finally, algorithms
are presented that control the automatic distribution of the
new versions of the algorithms.

JUNG: AN ALGORITHM FOR INTERACTIVE SIMULATION OF HIERARCHICALLY ARTICULATED BODIES 5

A. Parallelization of the Articulated-Body Method

The only way to obtain a large-scale parallelization of
the articulated-body method is to parallelize across the
breadth of the tree structure of the HABs, because linear
chains cannot be adequately parallelized. If different chains
in the tree can be executed in parallel, the time complexity
should be proportional to the length of the longest chain,
which is in fact the depth of the tree. Since there is a loga-
rithmic dependency between the number of nodes and the
depth of a tree, a time complexity of log(n) can be achie-
ved after parallelization (n being the number of degrees of
freedom).

For parallelization of the articulated-body method, four
equations (given in Appendix A) must be considered. In
equations 1 and 4, the index A; on its right-hand side indi-
cates that information is transferred in the direction from
the root to the leaves. In equations 2 and 3 information
is transferred in the opposite direction (indicated through
#i). Since velocity-based information (pY) is needed in
equation 3, the joint velocities must be computed prior
to the values of p; and ff‘ On the other hand, to compute
the accelerations (equations 4 and 5), the articulated-body
inertias must be known, because they are used to compute
the values of h;. To obtain the information when all joint
accelerations are computed, a final pass toward the root is
needed for synchronization. The data flow of the compu-
tation is shown in Figure 3.

A N

adv

—— dataflow

© rigid body

start of recursion
at root or leaf

data flow over
severa bodies

n
A

(ot I

Fig. 3. Data flow of the articulated-body method

B. Considering Data Frchange in a Distributed-Memory
Environment

When the joint accelerations are known at the root, a
central solver can compute the joint values and velocities
for the next iteration of the forward-dynamics algorithm.

However, two further considerations must be taken into
account. In Section II-C, the computational cost of the
solver is compared with the cost of the forward-dynamics
algorithm. To identify the fastest solver, the required solver
operations were neglected. However, if the time complexity
of the parallelized forward-dynamics algorithm is only lo-
garithmic, the mostly linear computational complexity of
the solver can no longer be neglected.

If a distributed-memory architecture is used, the ex-
change of data must be considered, too. Since the paralle-

TABLE VIII
DATA TRANSMISSION BETWEEN NEIGHBORING LINKS

pass toward transmitted number of
information floats
1 leaves q, 4, v 2n+6
2 root p, 14 33
3 leaves a 6
4 root q n

lization of the articulated-body method has a fine granula-
rity (e.g. while computing the spatial velocities, less than
fifty floating-point operations per joint are carried out), the
cost for communication can be greater than those for com-
putation. The amount of data that must be exchanged bet-
ween two neighboring but distributed links grows with the
number of nodes in the tree (see Table VIII). Since there is
a dependency between the execution time of the data trans-
mission and the amount of data to be transmitted, the time
complexity per simulation step is, strictly speaking, more
than linear. Nevertheless, for medium-sized articulated fi-
gures this effect can be neglected. Since we are concerned
with the simulation of large systems of HABs, we attempt
to reduce communication cost.

C. Distributing the Gear method

Computation of the new joint values and velocities (in
the case of the Gear method: prediction and correction)
can be performed per joint. Information from other joints
1s not needed. Thus, parts of the method can be distribu-
ted. However, to determine step size and order, informa-
tion from all joints must be considered.

All implementations of the Gear method known to the
author [15], [16] are given in FORTRAN. Since the monoli-
thic structure of the programs is not particularly conducive
for parallelization (compare e.g. [23]), an object-oriented
reimplementation in CT7 is performed.

The flow chart of the method is shown in Figure 4. Rec-
tangles with a black bar on their left side stand for opera-
tions over the whole state space of the method that can be
performed independently for each component. Rectangles
with triangles on their left side symbolize operations over
the state space with additive connections of the compon-
ents.

The next step to be performed is the reconfiguration of
the individual parts of the method for parallelization. The
parts are assigned to three phases:

¢ preparation,

¢ follow-up and

¢ control

In the control phase, the new step size and order are com-
puted. Vectorial information is not used in order to avoid
linear time complexity of the parallel implementation.

In the Gear method, weighted La-norms of different vec-
tors are used for determining corrector convergence, plau-
sibility of the corrected values and for computing step size

and order [15]:

SPECIAL ISSUE OF THE JOURNAL OF REAL TIME IMAGING ON "REAL TIME MOTION ANALYSIS”

expected ? measure of actual correction

can step size be
reduced ?

compute measure
of sum of corrections

acceptable ?:
measure of sum of corrections
<limit2 ?

change step size 7
number of unchanged steps
>= order 2

attempt <=3 7?

compute measures increase step size
of last derivatives and change perhaps order
using measures

I‘ransform NHR according
Ito new step size and order

1
1
1
1
: attempt := 1
1
1
| PETTONT]
| initialize NHR
: set sum of corrections with order 1
1 to zero
! (]
: forward dynamics agorithm
| prediction
1
1 |
1
1 order:=1
: forward dynamics algorithm
1
1
1
1
| compute correction)
, ransform NHR according
| (] 0 new step size and order
1 .
| I|ransform NHR according add correction deciease sﬁep Sze
! to new step size to sum of corrections
X €p and perhaps order
|) (] using prev. last derivat.
: compute new
, reconstruct old NHR fuction value compute measure of
1) previous last derivatives
1
! divide step sizeby 4 compute measu.re
! of actual correction
! reconstruct old NHR
1
! A
1
convergence ?:
| convergence 9 attempt := attempt + 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

————— transition from one step to the next

I:| operation over statespace

‘:| operation over statespace with additive connection

Fig. 4. Data flow of the Gear method

o actual correction ¢ * G(Y, (m)),
o last row of Nordsieck-history representation a,,

¢ Va,, the change of a, , that is de facto the sum of v
corrections, H ;Hz -

o VZa,, the change of Va, and

« an old value of a, for steps that have to be repeated where

Wi = |a1,i| * Tolpep + Tolgys

The weighted Lo-norm of a vector v i1s defined by Tol,.; and Tol,p, are the relative and absolute error to-

JUNG: AN ALGORITHM FOR INTERACTIVE SIMULATION OF HIERARCHICALLY ARTICULATED BODIES

preparation
reconstruct old NHR
| —
I transform NHR according | 1
Ito new step size and order | set sum of corrections
| to zero
I

compute measure of
previous last derivation

prediction

forward dynamics algorithm

N

follow-up

initialize NHR
with order 1

compute correction

[]
add correction

to sum of corrections
1]

update NHR with
function value

of V2

compute measure
of actual correction

compute measure
of sum of corrections

compute measures
of last derivation and

2
convergence convergence 7.

expected ?

divide step size by 4

<limit2 ?

change step size ?:
number of unchanged steps
>= order 2

increase step size attempt <= 37
change perhaps order

using last der.\/ gV
[]

measure of actual correction

measure of sum of corrections

control

decrease step size
decrease perhaps order
using prev. last derivat.

attempt := attempt + 1

can step sizebe
reduced ?

attempt ;=1

order :=1

attempt .= 1

Fig. 5. Rearranging the parts of the Gear method for a distributed-memory architecture

lerances, respectively, and n is the number of joints.

While determination of the square root and the division
by the number of joints can be performed in the control
phase, the addition of the component quadrates must be
distributed over the tree to avoid linear time complexity.
Each node has to add up the sums of the component qua-

drates of 1ts children and of its own joint.

These and all other operations that are carried out over
the state space are assigned to the preparation phase if they
have to be performed after the control phase and before
calling the forward-dynamics algorithm, and to the follow-
up phase in the other cases.

8 SPECIAL ISSUE OF THE JOURNAL OF REAL TIME IMAGING ON "REAL TIME MOTION ANALYSIS”

The new structure of the Gear method suitable for distri-
bution is shown in Figure 5. The dashed line indicates that
the transition from one step to the next is now hidden in
the preparation phase. However, this 1s not a real problem,
because after a successful step only the joint values (and
velocities) are used, and not the whole Nordsieck-history
representation, which is updated in the next preparation
phase.

Since the weighted Ls-norms of a4, Va,, and VZa, are
only used for determining the new step size and order, in
the original version of the Gear method these operations
have to be performed relatively seldom compared with the
number of function evaluations. Often only the weighted
Ls-norm of the actual correction is computed per function
evaluation. To have the measures available if needed in
control phase, all of them have to be computed per function
evaluation after rearrangment. Fortunately, the additional
operations needed for computation of the measures can be
neglected compared with the operations needed for solving
the forward-dynamics problem.

To avoid further passes per function evaluation, the pre-
paration and follow-up phases are integrated into the first
and fourth pass of the distributed articulated body, respec-
tively. The combination of the parts of the articulated-
body and the Gear method is shown in Figure 6. Apart
from the starting of the integrator (pass 0 in Table IX),
where the starting joint values and velocities are fed to
the distributed tree, only a constant number of values is
transmitted from one node to another.

measures N mA ‘
I\ p a
dt, r
control ——— =
Ay
dt,r,v

measures
a
® ©)
N
v dt,r,\/}‘ Vi " ﬁ/r N a\ \ /r measutes
B—] I - Y 1
. compute A compute| . .
il prepa | Jeomeel RO Py, (KEhdy) |, | G follow | | qq
ration X,V h du,ﬁ aq
| |
dt, .V 1"pl® a| ®| measures
B—] I - i 1
.) compute A compute . .
AdlL] prepa | ad Ml KO Ty, Kehdy |, | G follow | ad
ration X,V h,dup aq
| [
dtr g ™5 a measures
@ ©)

start of recursion iqi i
—= dataflow 2t TOOt or Teaf > rigid body link
--= using data data flow over itributi
inside alink 2 links ™ distribution

Fig. 6. Combination of the Gear method and the articulated-body
method

Following the described steps, the simulation of hierar-

chical articulated figures can be executed with logarithmic
time complexity.

Two further points must be considered: the visualization
of the figures, and the application of forces. For rendering
the figure, all joint values are needed. The transmission
of the values to a central rendering unit requires at least
linear cost because of the operations needed for transmit-
ting data. Since the number of function evaluations per
second (e.g. 100 to 10,000) is usually much bigger than
the frame rate (e.g. 30 frames per second), this cost can
be often neglected. If this i1s not the case, the combina-
tion of rendering and simulation software will have to be
considered.

TABLE IX
DATA TRANSMISSION BETWEEN NEIGHBOURED LINKS, DISTRIBUTING
THE GEAR METHOD

pass toward transmitted num. of
information floats

0 leaves q, ¢, U, t, step size, Tolyer, Tolgps 2n+10
la leaves D, 6
1b leaves U, new step size, new order 8
2 root D, 4 33
3 leaves a 6
4 root Z:(C*G(Y:L,(m)))g7 Z:(aq:jld)27 5

So(Brpeny2, 3 (Soe, 3Ty

Analogous to this, the actuator model should be com-
bined with the simulation software to avoid the feeding of
forces into and the retrieval of joint values from the tree.
To simulate cyclic articulated structures, the computation
of the loop-closure forces should also be combined with
the four passes of the articulated-body method (the loop-
closure forces can be seen as an actuator model).

D. Controlling the Distribution

Since linear chains cannot be parallelized, chains are
computed by one processor sequentially. The easiest way
to distribute data at branches is to start up all branches
sequently. To reduce start-up times, the starting up of
branches should be performed in parallel, too. To obtain
the minimum start-up time for all branches, each branch
must start other branches until all branches have been star-
ted. On the other hand, not all the branches that are to
be started have the same size and hence the same time.
Branches should be started in the order of their costs (the
largest branch first) and not at the same time in order to
minimize the time needed for execution.

Hence, a compromise between the two strategies is cho-
sen. To get a simple algorithm, every branch starts at most
two sibling branches before it begins computing its own
chain (Figure 7). The branch with the longer execution
time is started first.

What is needed, then, is a method for estimating the du-
ration of the computation of a branch depending on a given
distribution. The algorithm that estimates the time nee-
ded for execution of a branch depending on the estimated
durations

JUNG: AN ALGORITHM FOR INTERACTIVE SIMULATION OF HIERARCHICALLY ARTICULATED BODIES 9

o of the computation of a single body and (CMPTM)
e of the communication between two distributed bodies
(ROITM)

per function evaluation can be sketched as follows:

estimated duration(tree w)
{
if (w is empty)
return 0
else

{
dl :=0,dr :=0,dc:=0

if (left sibling node has processor other than w)

dr := ROITM,
dl := dr + estimated duration(left siblings)
else

dr := estimated duration(right siblings)

if (right sibling has processor other than w)
dec := dr + ROITM,
dr := dr + ROITM
+ estimated duration(right siblings)

else
dc := dr + estimated duration(right siblings),
dr:=0

dc := de + length of local chain * CMPTM
+ estimated duration(children)

return max(dl, dr, dc)

remote object

Q invocation time
computation
per body
Adistribution root of tree
w
"""" local invocation it
________ sibling .
7 ofw _rignt
sibling

=

cpus with distributed memory

Fig. 7. Distribution on a fork

In the case of there being more branches than proces-
sors, there must be a strategy for assigning branches to

processors. Moreover, it may be inefficient to assign a small
branch to a separate processor if the communication cost
exceeds the cost for computing the branch (e.g. the small
branch with one chain on the left-hand side of Figure 7
is computed locally because distribution would not reduce
the time needed for execution).

The idea behind the algorithm (given in detail in [26]) is
to use a further processor in the branch, that currently
needs the longest execution time. The term ”is time-
reducible” means that this time can be reduced. It cannot
be reduced, for example, if every sibling in the branch is
assigned to a different processor. Then the minimum exe-
cution time is reached. The algorithm can be sketched as
follows:

distribute n processors over tree w

{

assign processor 1 to all elements of tree w

for (processor p := 2
p < n and tree w is time reducible

p:=p+1)

use processor p in tree w

use processor p in tree w
{
if (left sibling of w is not empty and
(left sibling has the same processor as w or
left sibling is time-reducible))
compute estimated duration(left siblings)

if (right sibling of w is not empty and
(right sibling has the same processor as w or
right sibling is time-reducible))

{
compute estimated duration(right siblings)

add ROITM if left sibling is called per ROI
}

if (children of w are not empty)
compute estimated duration(children)
add length of local chain * CMPTM
add one or two times ROITM
if sibling nodes are called per ROI

if (this duration is the longest)
use processor p in the subtree of children
else
{
assign processor p to the subtree with the
longest duration

if (left sibling has same processor as w and

10 SPECIAL ISSUE OF THE JOURNAL OF REAL TIME IMAGING ON "REAL TIME MOTION ANALYSIS”

right sibling does not)
/* Do the ROI before local computations ! */
change siblings

assign processor p to subtree w
{
if (previously assigned processor of w equals
processor of caller)
assign processor p to all elements of subtree w
else
use processor p in tree w

w can be either a subtree or the root of the subtree de-
pending on the context of the operation. The two subtrees
that are called from a subtree before it starts its compu-
tation are called left and right sibling (see Figure 7). The
left sibling is the sibling called first.

E. Results

The algorithms discussed in the previous sections are
implemented on MANNA! [27], developed at GMD FIRST,
which is a MIMD architecture with distributed memory
using a crossbar for information transmission. At present,
a version with twenty application processors (Intel i860XP)
is available, running the operating system PEACE? [28]
which was also developed at the GMD FIRST.

PEACE offers an object model supporting the structu-
ring of parallel programs called ”dual objects” [29]. The
call of a method of an object located in a different memory
area is called Remote Object Invocation (ROI).

The time per ROI for parameters smaller than 49 Byte
is about 160 ps [30, page 154]. For larger amounts of me-
mory, the time per ROI increases with the amount of me-
mory. The cost for communication between two distributed
neighbors per function evaluation (ROITM) is about 1.5
milliseconds (for four ROIs including packing, unpacking,
etc., measured on MANNA). The numerical cost per link
and evaluation (CMPTM) is about 0.4 milliseconds (using
a CTT-to-C-translator and a C-compiler without optimi-
zation like pipelining, measured on MANNA).

To check the logarithmic time complexity, a set of
different-sized articulated figures is needed that can be re-
presented by a single logarithmic function (expressing the
dependency between the depth of the figure and the num-
ber of joints). The parameters of such a set of mobiles are
given in Figure 8. The interpolation line shows that the
mobiles of the set lie near to the given logarithmic func-
tion (an exact match is not possible because of the few
mobile parameters that can be varied).

Figure 9 gives the measured evaluation times of the mo-
biles on MANNA. It shows that the results of the algo-
rithm used for estimation of the time expenditure of a gi-

I Massively Parallel Architecture for Numerical and Non-numerical
Applications
2Process Execution and Communication Environment

55 T e

0 <=—

50 - S - X x4
| -2

depth of tree(s*) x

BT ogd /log (12) ——

35 -
30 - x
25 o -
20 -
15F - .

10

Number of joints

Fig. 8. Mobile parameters

ven distribution are comparable with the measured values
for twenty processors. Assuming that the duration of the
function evaluation on a MANNA with several thousand
processors can also be estimated with the given algorithm,
it can be gathered from Figure 9 that the distributed si-
mulation engine has only logarithmic time complexity.

0.25 Ty T
estimation for 20 processors —~<—
measured with 20 processors -+--
estimation for 10000 processors -5--
38 02 i
c
i
£
§
= 0.15 1
p=}
3
&
o
=]
2 01 R
=]
o]
o
(]
£
= 0.05 |- i
0 n il i P
10 100 1000 10000

Number of joints

Fig. 9. Evaluation time

To test the distribution algorithm, the evaluation time
as a function of the given number of processors is estima-
ted for two different mobiles. Problems that are ideally
scalable should have speed-up that is linearely dependent
on the number of processors. However, the speed-up of
the presented simulation engine is limited by the logarith-
mic dependency between the number of joints in the tree
and the depth of the tree (number of joints / depth of tree).
Thus, the parallel function evaluation can only be about 30

JUNG: AN ALGORITHM FOR INTERACTIVE SIMULATION OF HIERARCHICALLY ARTICULATED BODIES 11

times faster than the sequential one for the smaller mobile
with 455 joints, and about 200 times faster for the bigger
mobile. Looking at Figure 10, however, 1t is obvious, that
the speed-up of the small mobile is not higher than 10 (the
maximum speed-up is attained with 81 processors at the
latest, because this is the breadth of the tree).

T

4100 joints(0=9, | =5,
) 455joints (0=9,1 =5
B ideal scale ----- b

Estimated speed-up

10 20 30 40 50 60 70 80 90 100
Number of processors

Fig. 10. Speed-up as a function of the number of processors

The ”missing” speed-up can be interpreted as the com-
munication cost needed per function evaluation. Since this
cost is very high in relation to the cost needed for com-
putation, a reduction in communication time could result
in a reasonable reduction of the time required per func-
tion evaluation. On MANNA each application processor
has an associated communication processor that is not cur-
rently used. The use of this processor for communication
in parallel should give a reasonable speed-up.

IV. CoONCLUSION

The most efficient algorithms should be used to imple-
ment a real-time simulation engine that allows interaction.
Since there is no agreement as to which method should
be used for the physically based animation of articulated
figures, a test environment based on HABs is implemen-
ted to compare different solvers. Several tests show that
the Gear method for non-stiff problems needs the fewest
right-hand-side evaluations. Hence, this method should be
used in combination with the articulated-body method in
an one-processor environment.

Because of the high numerical cost, real-time simulation
of large systems of HABs is not possible with the cur-
rently available one-processor workstations. In this paper,
parallel variants of well-known algorithms are presented
which exploit the benefits of massively parallel distributed-
memory architectures. The presented variants have only
logarithmic time complexity, and are therefore suitable for
simulating very large systems of HABs on a large-scale ar-
chitecture.

On the basis of the simulation engine, an interactive de-
monstration program is implemented allowing the swinging
of mobiles up to about twenty links. Larger mobiles can
also be manipulated interactively if the user avoids abrupt
movements with the three-dimensional input device (with
six degrees of freedom) which would result in discontinuous
force functions and stiff situations.

Acknowledgements

My thanks go to Stefan Jahnichen and Dietmar Jackel
for supervising my Ph.D. Thesis; to Stefan Neunreither
for the many fruitful discussions we had, and to Birgitt
Schmidt and Phil Bacon for polishing up the English text.

APPENDIX
I. ARTICULATED-BoDY METHOD

The articulated-body method [12] for hierarchically ar-
ticulated figures is defined using ”spatial algebra” [14] by
the equations:

¢ = ViX5;q;
d; = §ZSilZ
ui = Qi = hi e — 57 pi
i = i X, 0n, + Sidi, (00 =0)

p; = @Z'XIZ'@Z'

s oo IAspsIA
=L+) X0 - W)jxi (2)
j€mi 8545 5

pi=p Y iX (4 e + d—],hj)
JEpi 7

a; = i Xaax, + ¢ + $idi, (ao = 0)

wi — hi i X, an,
—a)

where 7 1s the body index, A; the index of the predecessor
of 7, and p; the set of indices referring to the children of i.

The joint force 1s called @);, the joint value ¢;. Its time
derivatives are called ¢; (joint velocity) and ¢; (joint acce-
leration).

p; refers to the spatial bias force of the body ¢ (pAf to

i =

velocity-product forces) and I; to the rigid-body inertia.
The ”1nertia” of dynamic assemblies of rigid bodies is called
articulated-body inertia (I{).

The spatial velocity is called v;, the spatial acceleration
a; and the joint axis s;. All values are given in local body
coordinates.

The transformation from the coordinate system of body
¢t to that of body j can be expressed using the spatial trans-
formationjf(i. The other values are partial results without
any physical meaning.

12 SPECIAL ISSUE OF THE JOURNAL OF REAL TIME IMAGING ON "REAL TIME MOTION ANALYSIS”

Spatial force combines linear force f and torque r as

spatial accelerations linear acceleration a and rotational
acceleration « as
. o
a= ,
a

spatial velocities analogous to spatial accelerations and
joints s with the direction of the rotation axis r or the
direction of translation ¢, respectively, as

=(1).

Spatial transformations are expressed as

- E 0
X_<r><E E)’

where E is the rotation taking a body from one frame
to another, and r is the corresponding translation. The
rigid-body inertia is expressed as

- HT M
with I = m % sx (s center of gravity, m mass), I =
I* 4+ s x m(—s)x (I* inertia tensor) and M = m=1 (1 unit
matrix).
The spatial version of the cross operator

T -z Yy
Ji X = z 0 -z
z —y 0

1s

X =
ag agX aX

Using the spatial transposition for vectors

o= (2) =t

the spatial vector scalar product is defined as ash.

II. DYNAMIC DESCRIPTION OF A SINGLE BODY

The shape of the body from Figure 1 can be described
through the four parameters a, b, ¢ and h. The integral:

0 #2(y) z2(y,2)
[rewa=[[[s
y=—hJz=z1(y) Je=x1(y,2)

—951(3/’2):902(3/,»2)=a+%(b—a)+ — 2

—z21(y) = z2(y) =

extend over the volume of the body. For f(z,y,z) =
o(y* + z?) the component I, of the inertia tensor is ob-
tained, and for f(z,y,z) = o(z* + 2?) and f(z,y,z) =
o(z? + y?), the components I, and I, respectively. The
other components of the matrix I are zero.

For f(x,y,z) = ¢ the mass is obtained, and for
flx,y,2) = o * r the center of mass scaled by the mass
(r is the vector from the origin).

The evaluation of the integrals leads to:

h
Low = % (4ac® + 16bc” + 12ah? + 48bh” + 3c%x + 12¢h’x)

[@ 263 + 4a%b + 6ab® + 80> + 6ac? + 24bc?+
Y97 30 a’em + 3aber + 6b6%cw + 337
ch 4a® 4 8a%b + 12ab? + 1663 + 8ac’+
I, = 96—0 32bc? 4 12ah? + 48bh2 + 2a%cr + Gaber+

126%¢m + 337 + 12¢h®n

m+s — (0 —Qch2(4a1-;12b+3071') 0)

_och(2a 4 4b + cm)
N 3

With M = m * 1 (1 unit matrix) and H = m * sx, the
rigid-body inertia can be formed (according to equation 6).

m

REFERENCES

[1] Jane Wilhelms and Brian A. Barsky, “Using dynamic analy-
sis to animate articulated bodies such as humans and robots”,
Proccedings of Graphics Interface, pp. 97-104, 1985.

[2] William W. Armstrong and Mark W. Green, “The dynamics
of articulated rigid bodies for the purposes of animation”, The
Visual Computer, vol. 1, pp. 231-240, 1985.

[3] William W. Armstrong, Mark Green, and Robert Lake, “Near-
real-time control of human figure models”, IEEFE Computer Gra-
phics and Applications, pp. 52—61, 1987.

[4] Paul M. Isaacs and Michael F. Cohen, “Controlling dynamic
simulation with kinematic constraints, behavior functions and
inverse dynamics”, SIGGRAPH Proceedings, Computer Gra-
phics, pp. 215-224, 1987.

[5] Ronen Barzel and Alan H. Barr, “A modeling system based
on dynamic constraints”, SIGGRAPH Proceedings, Computer
Graphics, pp. 179-188, 1988.

[6] Peter Schroder and David Zeltzer, “The virtual erector set: dy-
namic simulation with linear recursive constraint propagation”,
in Proceedings of the 1990 Symposium on Interactive 3D Gra-
phics, Snowbird, Utah, March 1990, pp. 23-31.

[7] C.W. A. M. van Overveld, “An iterative approach to dynamic
simulation of 3-d rigid-body motions for real-time interactive
computer animation”, The Visual Computer, vol. 7, pp. 27-38,
1991.

[8] Andrew Witkin, Michael Gleicher, and William Welch, “Inter-
active dynamics”, in Proceedings of the 1990 Symposium on
Interactive 3D Graphics, Snowbird, Utah, March 1990, pp. 11—
21.

[9] M. W. Walker and D. E. Orin, “Efficient dynamic computer
simulation of robotic mechanisms”, in Proceedings of the Joint
Automatic Control Conference, Charlottesville, VA, 1981.

[10] Jane Wilhelms, “Dynamic experiences”, in Making them move:
mechanics, control, and animation of articulated figures, Nor-
man [. Badler, Brian A. Barsky, and David Zeltzer, Eds. 1991,
pp. 265-279, Morgan Kaufmann Publishers, Inc.

[11] W. W. Armstrong, “Recursive solution to the equations of mo-
tion of an n-link manipulator”, in Proceedings of the Fifth World
Congress on Theory of Machines and Mechanisms. 1979, pp.
1343-1346, The American Society of Mechanical Engineers.

[12] R. Featherstone, “The calculation of robot dynamics using
articulated-body inertias”, The International Journal of Ro-
botics Research, vol. 2, no. 1, pp. 13-30, 1983.

JUNG: AN ALGORITHM FOR INTERACTIVE SIMULATION OF HIERARCHICALLY ARTICULATED BODIES 13

(13]

(14]

15]

(16]

(19]

(20]

(21]

(22]

(23]

(24]

(23]

26]

(27]

(28]

(29]

(30]

Richard H. Lathrop, “Constrained (closed-loop) robot simula-
tion by local constraint propagation”, in Robotics and Automa-
t1ion. IEEE Council on Robotics and Automation, 1986.

Roy Featherstone, Robot dynamic algorithms, Kluwer Academic
Publishers, Boston/Dordrecht/Lancaster, 1987.

C. William Gear, Numerial nitial value problems in ordinary
differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.
7., 1971,

Alan C. Hindmarsh, “Odepack, a systemized collection of ode
solvers”, in Scientific Computing, R. Stepleman et al, Ed. 1983,
pp- 55-64, IMACS/North-Holland Publishing Company.

P. E. Tischer and G. K. Gupta, “An evaluation of some new cy-
clic linear multistep formulas for stiff odes”, ACM Transactions
on Mathematical Software, vol. 11, no. 3, pp. 263-270, 1985.

Mark Green, “Using dynamics in computer animation: control
and solution issues”, in Making them move: mechanics, con-
trol, and animation of articulated figures, Norman I. Badler,
Brian A. Barsky, and David Zeltzer, Eds. 1991, pp. 281-314,
Morgan Kaufmann Publishers, Inc.

P. J. Vanderhouven and B. P. Sommeijer, “Analysis of parallel
diagonally implicit iteration of runge kutta methods”, Applied
Numerical Mathematics, vol. 11, no. 1-3, pp. 169-188, 1993.

M. Amin-Javaheri and D. E. Orin, “A systolic architeture for
computation of the manipulator inertia matrix”, in Proc. IEEE
Int. Conf. Robotics and Automation, Raleigh, NC, 1987, pp.
647-653.

A. Fijany and A. K. Bejczy, “A class of parallel algorithms for
computation of the manipulator inertia matrix”, in IEEE Int.
Conf. Robotics and Automation, 1989, pp. 1818-1826.

C. S. G. Lee and P. R. Chang, “Efficient parallel algorithms for
robot forward dynamics computation”, in Proc. IEEE Int. Conf.
Robotics and Automation, Raleigh, NC, 1987, pp. 654-659.

R. E. Strout, J. R. McGraw, and A. C. Hindmarsh, “An exami-
nation of the conversion of software to multiprocessors”, Journal
of Parallel and Distributed Computing, , no. 13, pp. 1-16, 1991.

Rod Deyo, John A. Briggs, and Pete Doenges, “Getting graphics
in gear: graphics and dynamics in driving simulation”, SIG-
GRAPH Proceedings, Computer Graphics, pp. 317-326, 1988.

H. T. Kung, “New algorithm and lower bounds for the parallel
evaluation of certain rational expressions and recurrence”, J. of
Association for Computing Machinery, vol. 23, no. 2, pp. 251—
261, Apr. 1976.

Thomas Jung, FEntwicklung einer Plattform zur interaktiven
physikalisch basterten Animation gelenkig verbundener Systeme,
(GMD-Bericht Nr. 249). R. Oldenbourg, Miinchen, Wien, 1995,
also: Ph.D. Thesis, Technical University of Berlin.

W. K. Giloi, Towards the next generation parallel computers:
MANNA and META, Proc. ZEUS '95, Linkoeping, Sweden,
1995.

J. Cordsen and W. Schréder-Preikschat, “Objective peace: A
bridge between parallel and distributed operating systems”, in
Proceedings of the ERCIM Workshop on Distributed Systems,
Lisboa, Portugal, November 14-15, 1991, pp. 109-112.

J. Nolte and W. Schréder-Preikschat, “An object-oriented com-
puting surface for distributed memory architectures”, in Soft-
ware Technology, Ted Lewis Hesham El-Rewini and Bruce D.
Shriver, Eds., Maui, Hawaii, January 5-8 1993, vol. 2 of Procee-
dings of the Twenty-Sizth Annual Hawait International Confere
nce on System Sciences, pp. 134-143, IEEE Computer Society
Press.

Jorg Nolte, Duale Objekte — Ein Modell zur objektorientier-
ten Konstruktion von Programmfamilien fir massiv parallele
Systeme, (GMD-Bericht Nr. 232). R. Oldenbourg, Miinchen,
Wien, 1994, also: Ph.D. Thesis, Technical University of Berlin.

Thomas Jung was born in Berlin, Germany,
on April 16, 1964. He received his M.S. and
Ph.D. degrees in computer science from the
Technical University of Berlin in 1989 and
1995, respectively. Since 1987, he has been
with the GMD-FIRST. His current research
interests include distributed algorithm design,
physically based animation, and virtual envi-
ronments.

